跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李芳存
fang tsun li
論文名稱: 以硒化銦和,作為緩衝層之硒化銅銦鎵薄膜太陽能電池
CIGS thin film solar cell with In2Se3 and Cu2Se buffer layers
指導教授: 辛裕明
Yue-ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 硒化銅硒化銅銦鎵硒化銦
外文關鍵詞: Cu(In, Ga)Se2, In2Se3, Cu2Se
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究內容為成長Al/AZO/ZnO/In2Se3/Cu2Se/CIGS/Mo/SLG結構之薄膜太陽能電池(CIGS solar cell),Al上電極使用電子槍蒸濺鍍系統成長,其餘各層薄膜皆以濺鍍方式成長,並針對元件進行直流量測、分析與討論。目前已做出具有轉換效率之硒化銅銦鎵薄膜太陽能電池,並在AM1.5之標準光源下,量測元件開路電壓Voc = 126 mV,短路電流密度Jsc = 1.366 mA/cm2,填充因子F.F = 39.46 %,而轉換效率則為0.068 %,接面理想因子η為3.63。由元件順向偏壓分析,推論空乏區內主要由複合電流所主導,所以需改善元件的接面問題以及CIGS薄膜品質,以增進元件效率。


    This project focuses on fabrication of Al/AZO/ZnO/In2Se3/Cu2Se/CIGS/Mo/ SLG thin film solar cell (CIGS solar cell). The metal grid Al was fabricated by E-Gun evaporator and other films were deposited by sputtering. Detailed film analysis and discussion were carried out after film deposition immediately for the CIGS solar cell performance. The analysis includes X-ray, UV-NIR, Hall-measurement, EDS, SEM, 4-points resistance measurement.
    The fabricated CIGS thin film solar cell demonstrated preliminary results. By AM1.5 measurement, the measured open-circuit voltage (Voc) is 126 mV, the short-circuit current density (Jsc) is 1.366 mA/cm2, Fill Factor (FF) is 39.46 %, and the conversion efficiency is 0.068 %. The junction ideality factor in the forward diode measurement is about 3.63, which shows the major recombination current in the device with high turn-on resistance. To further improve the quality of absorber layer CIGS and the junctions would be able to obtain improved cell efficiency.

    摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 簡介 1 1.1 前言 1 1.2 太陽能電池介紹 2 1.2.1 各類太陽能電池 2 1.2.2 太陽光譜 4 1.2.3 太陽能電池工作原理 5 1.3 CIGS太陽能電池特性與發展 7 1.4 研究目的與動機 8 1.5 研究摘要 9 第二章 CIGS太陽能電池設計與製作 10 2.1 簡介 10 2.2元件設計分析與探討 10 2.3 元件製作流程 14 2.4 薄膜成長之儀器 19 2.5 薄膜特性分析之儀器 21 2.6 結論 25 第三章 結果與討論 26 3.1 前言 26 3.2 薄膜部分 26 3.2.1 Mo背電極之鍍製 26 3.2.2 CIGS主吸收層之鍍製 29 3.2.3 Cu2Se緩衝層之鍍製 34 3.2.4 In2Se3緩衝層之鍍製 36 3.2.5 ZnO透光層之鍍製 39 3.2.6 AZO透光層之鍍製 43 3.2.7 Ni/Al/Ni上電極之製作 47 3.3 元件製作與量測 49 3.3.1 元件特性之參數簡介 49 3.3.2 電流-電壓之曲線量測與討論 50 3.4 結論 59 第四章 結論與未來工作 60 參考文獻 61

    [1] M.A. Green, Energy Police 28, pp.989-998, 2000.
    [2] John Tracy, and Joseph Wise, “Space Solar Cell Performance For Advanced GaAs and Si Solar Cells”,IEEE,1988
    [3] S.O. Kasap, Optoelectronics and photonics: principle and practices, Prentice Hall published, pp. 255-273, 2001.
    [4] 莊嘉珅, “太陽能工程. 太陽能電池篇” 全華圖書, (1997)
    [5] Ingrid Repins, Miguel A. Contreras, Brian, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, Progress in Photovoltaics: Research and Application 16, p235, 2008.
    [6] H. J. Moller, Semiconductor For Solar Cell, Landon, Artech House, 1993
    [7] M. Krejci, PhD thesis, ETH Zurich, 1999
    [8] Yen-Chin Huang, Zhen-Yu Li, Wu-Yih Uen, Shan-Ming Lan, K.J. Chang, Zhi-Jay Xie, J.Y. Chang, Shing-Chung Wang, Ji-Lin Shen, Growth of g-In2Se3 films on Si substrates by metal-organic chemical vapor deposition with different temperatures, Journal of Crystal Growth 310 (2008) 1679–1685
    [9] M Emziane, S Marsillac, J Ouerfelli, J C Bern&de, R Le Ny, γ-ln2Se3 thin films obtained by annealing sequentially evaporated In and Se layers in flowing argon
    [10] Kegao Liua, Hong Liub, JiyangWangb, Lei Shia, Synthesis and characterization of Cu2Se prepared y hydrothermal co-reduction, Journal of Alloys and Compounds, 5 May 2009
    [11] J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., 102, 114903 (2007).
    [12] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301, (2005).
    [13] H. Kim, A. Piqué, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D.B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films, vol. 377-378, pp. 798-802, 2000.
    [14] Y. Igasaki, and H. Saito, “The effects of deposition rate on the structural and electrical properties of ZnO: Al films deposited on (1120) oriented sapphire substrates,” J. Appl. Phys., vol. 70, 3613 (1991).
    [15] F.-J. Haug, H. Zogg, A. N. Tiwari, “11% EFFICIENCY ON ClGS SUPERSTRATE SOLAR CELLS WITHOUT SODIUM PRECURSOR”, IEEE Photovoltaic Specialists Conference, Page(s):728 – 731, May 2002
    [16] Seok Ki Kim, Jeong Chul Lee. Ki Whan Kang Kyung Hoon Yoon
    I Jnn Park, Jinsoo Song. Sang Ok Han'', Mo THE PROPERTIES OF CU(IN,GA)SE, SOLAR CELLS DEPENDING ON GROWTH, 3rd World Conference on Photovoltaic Energy Conversion May 11-18.2003 Osoka. Japan.
    [17] 莊嘉珅, “太陽能工程. 太陽能電池篇” 全華圖書, (1997)
    [18] F.B. Dejene , Phuthaditjhaba, “Material and device properties of Cu(In,Ga)Se2 absorber films prepared by thermal reaction of InSe/Cu/GaSe alloys to elemental Se vapor”, Current Applied Physics (2009)
    [19] G. Gordillo, C. Calderon, “CIS thin film solar cells with evaporated InSe buffer layers”, Solar Energy Materials & Solar Cells 77 (2003) 163–173
    [20] E. Fred Schubert, Light-Emitting Diode
    [21] 李俊賢,”CuInSe2:Sb薄膜太陽能電池之研製”,中山大學材料科學研究所 碩士論文,中華民國九十三年七月
    [22] 王麗婷,電沉積二硒化銅銦薄膜之特性分析,東華大學光電工程研究所碩士論文,中華民國九十七年七月
    [23] 黃惠良,曾百亨,“太陽電池”,五南圖書,(2008)
    [24] M. Igalson, C. Platzer Bjorkman, “The influence of buffer layer on the transient behavior ofthin film chalcopyrite devices”, Solar Energy Materials & Solar Cells 84 (2004) 93–103.
    [25] Marika Bodegard, Karin Granath, Lars Stolt, Angus Rockett, “The behaviour of Na implanted into Mo thin films during annealing”, Solar Energy Materials & Solar Cells 58 (1999) 199-208.

    QR CODE
    :::