| 研究生: |
林克融 Ko-Jung Lin |
|---|---|
| 論文名稱: |
探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響 Effects of pH and Xanthan gum supplement on the polysaccharide production by Agaricus blazei Murill |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 抗腫瘤生物活性 、多醣體 、pH值 、巴西蘑菇 、Xanthan |
| 外文關鍵詞: | pH, Agaricus blazei, polysaccharide, Xanthan, antitumor |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
巴西蘑菇為一種食藥用菇,近來之所以受到注目,是因為巴西蘑菇多醣體的抗腫瘤活性極高,能有效提高生物體的免疫機能,活化老鼠體內巨噬細胞的吞噬能力,以及對小白鼠sarcoma 180的腫瘤抑制率與腫瘤完全退縮率幾乎達到100%的效果,是未來相當具有潛力開發成為一種抗癌藥物,另外在作為保健食品方面,目前市面上也已經有幾種商品化的產品出現。
為了增加巴西蘑菇多醣體的產量,本研究以深層液態發酵的培養方式,以期增加多醣體的產量,然而影響發酵的環境因子很多,過去的文獻中提到,培養基的pH值,會影響到菌體的外觀型態及顆粒大小,間接地影響到產物的生成,另外也有文獻指出,在培養基中添加水溶性多醣體,將可以增加產物的生成,因此本研究將針對培養基pH值以及在培養基中添加高黏度的水溶性多醣Xanthan gum對巴西蘑菇多醣體生產的影響來作探討。此外也將利用體外測試之動物細胞實驗,針對以不同條件發酵得到之巴西蘑菇多醣體進行生物活性的測定。
本研究分別進行搖瓶震盪培養以及攪拌式發酵槽培養。在搖瓶震盪培養的實驗結果方面,在起始pH值對巴西蘑菇發酵的影響,分別做起始pH=4、5、6、7、8五組,結果發現隨著起始pH值的上升,單位基質菌體的轉化率(YX/S)為降低的趨勢,以起始pH=4的YX/S=0.734最高。單位基質多醣的轉化率(YP/S)則隨著起始pH值的上升為增加的趨勢,以起始pH=8的YP/S=0.514為最高。即在低起始pH=4的時候,對菌體的生長較佳,而在高起始pH=8的時候,利於多醣體的生成。另外從分子量分布的結果發現,隨著起始pH值的上升,巴西蘑菇多醣體的平均分子量為減小的趨勢。
培養基中添加Xanthan gum的濃度對巴西蘑菇在搖瓶實驗之影響上,巴西蘑菇單位基質與單位菌體的多醣體轉化率(YP/S,YP/X),以添加0.1% Xanthan gum對多醣體生成的效果最好,然而再提高Xanthan gum的濃度,其實驗結果便呈現下降的趨勢,其原因推測可能是因為搖瓶的實驗,本身氧氣的提供量即是不足的,再加上Xanthan gum為高黏度的多醣體,增加了培養基的黏稠度,更不利於氧氣被菌體所利用,而影響菌體的生長與多醣體的生成,不過,添加少量的Xanthan gum,適當的提高培養基的黏度,對巴西蘑菇多醣體的生成是有正面的幫助。
在添加0.1% Xanthan gum之不同起始pH值的搖瓶實驗中,對於巴西蘑菇單位基質之菌體與多醣轉化率(YX/S,YP/S)的影響上,以低起始pH=5的YX/S=0.721最高,高起始pH=8的YP/S=0.812為最高。而在平均分子量方面,以高起始pH=8的平均分子量最小,其他四組的平均分子量相差不大,以起始pH=6的較大。
同樣添加0.1% Xanthan gum之不同pH值(controlled)的發酵槽實驗中,以高pH=7最利於多醣生成,其多醣產量為3.65 g/L。低pH=5最利於菌體生長,其菌體產量為7.41 g/L。而高pH=7的多醣產率最高,為0.2028 g/L/day。平均分子量的比較上,以低pH=5發酵24天所得到的多醣體分子量最高。
在巴西蘑菇多醣體的生物活性測定上,首先從鼠科巨噬細胞RAW 264.7、J774A.1及人類巨噬細胞U-937、K-562四株細胞中,挑選出RAW 264.7最適合作為本研究生物活性測定的細胞株。搖瓶實驗中,不同起始pH值所發酵生產之巴西蘑菇多醣體,以低起始pH=4所生產的多醣其生物活性最高。而添加0.1% Xanthan gum之不同起始pH值的搖瓶實驗中,也是以低起始pH=4所得到的多醣其生物活性最高。最後發酵槽的實驗中,則是以低pH=5發酵24天所得到的多醣體其生物活性最高,由這些結果可以歸納出巴西蘑菇多醣體的生物活性與其分子量的大小是成正比的關係,分子量較大的多醣體,其生物活性也隨之較高。
According to the recent statistical report about the causes of death of the people in Taiwan from the Department of Health, cancer has been on the top of the list. According a recent report of National Science Foundation in Taiwan, the health food market in Taiwan is estimated to be 23 trillion NT per year. However, many health foods in the market are sold against the laws claimed to have certain healing effect toward certain illness without scientific evidence. As a result, many consumers become victims.
Agaricus blazei was found to be one of the best mushrooms in the regards of antitumor activety. Recently, many anti-tumor materials and bioactive compounds have been isolated from Agaricus blazei. The major breakthrough for medicinal mushroom production is usingsubmerged cultures to replace the conventional method, solid-state fermentation, which are faster growth rate, more polysaccharide production and no contamination by heavy metals.
The operational conditions of bioreactors are essential for the production of functional polysaccharides from mycelium fermentation of Agaricus blazei. Nevertheless, little effort has been focused on the process parameters on the bioactivity of polysaccharides.
水野卓,“菇類的化學‧生化學”,賴慶亮譯,國立編譯館,1997。
周柏甫,“探討菌體形態對於裂摺菌多醣體生產之影響”,國立中央大學化學工程研究所,碩士論文,2001。
陳怡倩,“利用批次液態培養來探討檸檬酸對裂摺菌生長及其多醣體生成影響之研究”,國立中央大學化學工程研究所,碩士論文,2001。
黃鈴娟,“樟芝與姬松茸之抗氧化性質及其多醣組成分析”,國立中興大學食品科學研究所,碩士論文,2000。
黃賜源,“靈芝液態培養及氣舉式生化反應器應用之研究”,私立東海大學化學工程研究所,碩士論文,1996。
游英欽,“以搖瓶振盪及小型發酵槽培養,探討培養基組成及物理化學因子對於靈芝多醣生成及生長形態變化之影響“,國立交通大學生物科技研究所,碩士,1995。
楊鴻銘,“ 製程研究與放大 ” ,化工,44,16-25,1997。
劉勝宇,“探討培養溫度對巴西蘑菇液態發酵之影響”,國立中央大學化學工程研究所,碩士論文,2001。
Arinaga, S., Karimine, N., Takamuku, K., Nanbara, S., Nagamatsu, M., Ueo, H., Akiyoshi, T., “Enhanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma,” Int. J. Immunopharmac., 14, 43-47, 1992.
Carolan, G., Catley, B. J., Mcdougal, F. J., “The location of tetrasaccharide units in pullulan,” Carbohydrate Research., 114, 237-243, 1983.
Chain, E. B., Gualandi, G., Morisi, G., “Aeration studies. IV. Aeration condition in 3000-liter submerged fermentation with various microorganisms,” Biotechnology and Bioengineering, 8, 595-619, 1966.
Chao, Y., Mitarai, M., Sugano, Y., Shoda, M., “Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor,” Biotechnol. Prog., 17, 781-785, 2001.
Fang, Q. H. and Zhong, J. J., “Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum,” Process Biochemistry, 37, 769-774, 2002.
Fevre, M. and Rougier, M., “Beta-1-3-glucan and Beta-1-4-glucan synthesis by membrane-fractions from the fungus Saprolegnia,” PLANTA., 151, 232-241, 1981.
Forage, R. G., Harrison, D. E. F., Pitt, D. E., “Effect of environment on microbial activity,” Comprehensive Biotechnology, 1, 253-279, 1985.
Fruehauf, J. P., Bonnard, G. D., Herberman, R. B., “The effect of lentinan on production of interleukin-1 by human monocytes,” Immunopharmacology, 5, 65-74, 1982.
Garcia-Ochoa, F., Santos V. E., Casas, J. A., Gomez, E., “Xanthan gum: production, recovery, and properties,” Biotechnology Advances, 18, 549-579, 2000.
Heald, P. J. and Kristiansen, B., “Synthesis of polysaccharide by yeast like forms of Aureobasidium pullulans,” Biotechnology and Bioengineering, 27, 1516-1519, 1985.
Lacroix, C., LeDuy, A., Noel, G., Choplin, L., “Effect of pH on the batch fermentation of pullulan from sucrose medium,” Biotechnology and Bioengineering, 27, 202-207, 1985.
Lee, J. H., Kim, J. H., Zhu, I. H., Zhan, X. B., Lee, J. W., Shin, D. H., Kim, S. K., “Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans,” Biotechnology Letters, 23, 817-820, 2001.
Madi, N. S., McNeil, B., Harvey, L. M., “Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans,” J. Chem. Tech. Biotechnol., 66, 343-350, 1996.
Mizuno, T., Hagiwara, Y., Nakamura, T., Ito, H., Shimura, K., Sumiya, T., Asakura, A., “Antitumor activity and some properties of water-soluble polysaccharides from Himematsutake, the fruiting body of Agaricus blazei murill,” Agaric. Biol.Chem., 54, 2889-2896, 1990.
Mizuno, T., Saito, H., Nishitoba, T., Kawagishi, H., “Antitumoractive substance from mushrooms,” Food Rev. Int., 11, 23-61, 1995.
Moraine, R. A. and Rogovin, P., “Xanthan biopolymer production at increased concentration by pH control,” Biotechnology and Bioengineering, 13, 381-391, 1971.
Moraine, R. A. and Rogovin, P., “Kinetics of the xanthan fermentation,” Biotechnology and Bioengineering, 15, 225-237, 1973.
Quigley, D. R. and Selitrennikoff, C. P., “Beta-(1-3)glucan synthase activity of neurospora-crassa-stabilization and partial characterization,” Experimental Mycology, 8, 202-214, 1984.
Rau, U., Gura, E., Olszewski, E., Wagner, F., “Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing,” Journal of Industrial Microbiology, 9, 19-26, 1992.
Sakagami, H., Ikeda, M., Konno, K., “Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction,” Biochemical and Biophysical Research Communications, 162, 597-603, 1989.
Sia, G. M. and Candlish, J. K., “Effect of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line,” Phytother. Res., 13, 133-137, 1999.
Taurhesia, S. and McNeil, B., “Physicochemical factors affecting the formation of the biological response modifier Scleroglucan,” Journal of Chemical Technology and Biotechnology, 59, 157-163, 1994.
Wang, H. X., Ng, T. B., Liu, W. K., Ooi, V. E. C., Chang, S. T., “Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages,” Int. J. Biochem. Cell Biol., 28, 601-607, 1996.
Wang, Y. and McNeil, B., “pH effects on exopolysaccharide and oxlic acid production in cultures of Sclerotium glucanium,” Enzyme and Microbial Technology, 17, 124-130, 1995.
Wang, Y. and McNeil, B., “Scleroglucan,” Critical Reviews in Biotechnology, 16(3), 185-215, 1996.
Yang, F. C. and Liau, C. B., “The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures,” Process Biochemistry, 33, 547-553, 1998.
Young, S. H. and Jacobs, R. R., “Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue,” Carbohydrate Research, 310, 91-99, 1998.
Zhang, J., Wang, G., Li, H., Zhuang, C., Mizuno, T., Ito, H., Suzuki, C., Okamoto, H., Li, J., “Antitumor polysaccharides from a Chinese mushroom Yuhuangomo, the fruiting body of Pleurotus citrinopileatus,” Biosci. Biochem., 58, 1195-1202, 1994.
Zhang, L. and Tizard, I. R., “Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel,” Immunopharmacology, 35, 119-128, 1996.