跳到主要內容

簡易檢索 / 詳目顯示

研究生: 康芳瑋
Fang-Wei
論文名稱: 開發新型氣流式二維氣相層析法分析空氣污染物
指導教授: 王家麟
Jia-Lin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 分析化學氣相層析全面二維氣相層析揮發性有機污染物前濃縮氣流式調制器
外文關鍵詞: Analytical Chemistry, Gas Chromatography, Comprehensive Two Dimensional Gas Chromatography, VOCs, Pre-concentrate, Flow Modulator
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統一維氣相層析技術在分析大氣中複雜的揮發性有機化合物 (Volatile Organic Compound, VOCs)時因分離能力與峰容量有限而無法將其完全分離,而全面二維氣相層析技術 (Comprehensive Two Dimensional GC, GC×GC)利用兩組極性相異的管柱與一組調制器使其具有相當強大的解析能力。GC×GC技術雖然在香水與燃料等液態樣品分析上應用廣泛,對於大氣濃度下VOCs的分析因民眾近年對空氣污染議題日益關注也顯得極具發展研究的價值。本研究結合前濃縮熱脫附儀 (Thermal Desorption Unit, TD)、GC×GC與火焰離子偵測器 (Flame Ionization Detector, FID)建構TD-GC×GC-FID系統以對大氣環境中交通源排放的低濃度VOCs進行有效分離。
    調制器 (modulator)是全面二維氣相層析法不可或缺之元件,而利用液態氮的冷凍式調制器因其高靈敏度與實驗參數易於調整等特性使其成為最廣為使用的偵測器。然而如液態氮等液態冷劑的維護所需的龐大人力和物力使GC×GC技術的普及受到限制,因此無需液態氮的氣流式調制器逐漸受到重視。而大多數氣流式全面二維氣相層析法的硬軟體皆為商業化組件,難以變更調制器中管路的孔位設計與尺寸參數。本研究利用兩組SGE SilflowTM分流盤搭上自行設計的孔位配置,建構一套氣流式調制系統並進一步對更細部的參數進行討論與優化,例如系統流路、氣流大小和樣品迴圈規格等。
    本研究藉由分析VOCs標準氣體 (包含PAMS和NIEA715.15B)和空氣樣品討論自行組裝TD-GC×GC-FID系統中各項參數的最佳化,參數包含管柱靜相組合、調制參數、氣流大小調整、樣品迴圈與阻抗管規格等。最終優化之重要參數如下:管柱組合為DB-1 (30 m× 0.25 mm × 1.0 μm) × Stabilwax (2m × 0.18 mm × 0.18 μm)、調制周期 (Mp)為三秒、調制占空比為0.15、調制比例於5-7之間、樣品迴圈為25 cm × 0.32 mm O.D.(體積為25μm)、阻抗管參數為1.6 m × 0.18 mm。
    本TD-GC×GC-FID系統亦藉由分析包含61種極性組成多元化合物的NIEA715.15B標準氣體以驗證本系統具有將不同極性的目標化合物有效分離的能力。TD-GC×GC-FID系統在利用標準品確認最佳化條件後也對由採樣袋所採集的都市街道空氣樣品 (VOCs來源主要為汽機車)於實驗室進行分析。TD-GC×GC-FID系統對VOCs具有良好分群能力,並且對於PAMS中各標準品在7重複實驗下皆有1.4 %以下RSD的高再現性,對於甲苯的偵測極限為18 ppb,說明本系統能有效分析對VOCs具有良好的分析能力。


    Due to the complexity of ambient volatile organic compounds (VOCs), conventional one-dimensional gas chromatography is limited in separation power and peak capacity. The advent of comprehensive two dimensional GC, called GCxGC, has greatly improved peak resolution by employing two columns of different polarities connected with a modulator. Although this GCxGC technique was largely used for liquid samples such as fuels and fragrance, the potential and benefits in VOC analysis at ambient level is tremendous and worth exploring in response to the growing public concern of air pollution in recent years. In this study, we coupled a thermal desorption (TD) pre-concentrator with GCxGC-FID (called TD-GCxGC-FID), ambient-level VOCs from traffic emissions were able to be effectively analyzed.
    The modulator is a core component in GCxGC, and thermal modulators are the most widely used owing to the advantages of sensitivity and the ease of optimizing modulation parameters. However, the need of cryogen, such as liquid nitrogen, hinders many users from ownership due to high cost in purchase and maintenance. Instead, flow modulators, which do not need cryogen, has steadily gain popularity. Although commercial flow modulators are available, the flexibility in the flow design is low. In this study, we used two flow splitters (provided by SGE SilflowTM) to configure a flow modulator to improve versatility in modulation, such as flow path, flow rate, and sample filling loop length without adding dead volume.
    In this study, we report the optimization process of a self-built TD-GCxGC-FID system by analyzing both standard mixtures of VOCs (both PAMS and NIEA715.15B) and ambient air samples from the aspects of column phase selection, modulation parameters, flow adjustment, and the control parameters of the filling loop and bleeding. The important GCxGC parameters were determined as: column combination = DB-1 (30 mx 0.25 mm x 1.0 um) x Stabilwax (2 m x 0.18 mm x 0.18 um), modulation period (Mp) = 3 s, duty cycle = 0.15, modulation ratio (MR) = 5-7, filling loop = 25 cm x 0.32 mm O.D. (or 25 um in volume) and the bleed column length = 1.6 m x 0.18 mm.
    The standard mixture of NIEA 715.15B containing 61 compounds of various polarity were analyzed to ensure the ability to separate target compounds of different functional groups. With the conditions set by the standard mixtures, real ambient samples were then collected by the TedlarTM bags in the streets with VOCs mainly contributed by the traffic source and analyzed by the TD-GCxGC method in the laboratory. VOCs were successfully separated in groups on GCxGC chromatograms with reproducibility of better than 1.4% for all PAMS target compounds and sensitivity in detection limit of 18 ppb for toluene as an example.

    目錄 中文摘要 I 英文摘要 III 圖目錄 XII 表目錄 XVI 第一章 前言 1 1-1 研究動機 1 1-2 氣相層析技術回顧 2 1-3 GC×GC技術介紹 7 1-3-1 進樣系統 8 1-3-2 調制器 (Modulator) 8 1-3-3 GC×GC重要分析參數 24 1-3-4 管柱組合 27 1-3-5 偵測器 (Detector) 30 1-4 文獻回顧 33 第二章 實驗設備與原理 45 2-1 實驗設備與材料 45 2-1-1 儀器設備 45 2-1-2 分析管柱 45 2-1-3 前濃縮儀 46 2-1-4 標準氣體 46 2-2 前濃縮系統原理與架構 50 2-2-1 前濃縮儀相位 50 2-2-2 捕捉管 53 2-2-3 自動控制系統 54 2-3 自組裝氣流式調制器系統介紹 56 2-4 數據處理方法介紹 62 2-4-1 數據處理 62 2-4-2 等值圖譜繪製 66 第三章 實驗結果與討論 71 3-1 管柱組合選擇 72 3-1-1 一維管柱選擇 72 3-1-2 二維管柱選擇 73 3-2 調制參數選擇 77 3-2-1 調制週期選擇 77 3-2-2 調制脈衝選擇 79 3-2-3 調制佔空比計算 82 3-3 阻抗管長度選擇 83 3-4 一維與二維氣流大小選擇與討論 86 3-5 系統穩定性測試 91 3-6 氣流式GC×GC 參數討論 93 3-7 真實樣品分析 99 第四章 結論 101 參考文獻 103

    1. Eiceman, G. A.; Hill, H. H.; Davani, B.; Gardea-Torresday, J., Gas Chromatography. Analytical Chemistry 1996, 68 (12), 291-308.
    2. Bertsch, W., Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications - Part 1: Fundamentals, Conventional Two-Dimensional Gas Chromatography, Selected Applications. Journal of High Resolution Chromatography 1999, 22 (12), 647-665.
    3. Marriott, P. J.; Chin, S.-T.; Maikhunthod, B.; Schmarr, H.-G.; Bieri, S., Multidimensional gas chromatography. TrAC Trends in Analytical Chemistry 2012, 34, 1-21.
    4. Jacobs, M. R.; Gras, R.; Nesterenko, P. N.; Luong, J.; Shellie, R. A., Back-flushing and heart cut capillary gas chromatography using planar microfluidic Deans' switching for the separation of benzene and alkylbenzenes in industrial samples. J Chromatogr A 2015, 1421, 123-8.
    5. Yang, S. O.; Kim, Y.; Kim, H. S.; Hyun, S. H.; Kim, S. H.; Choi, H. K.; Marriott, P. J., Rapid sequential separation of essential oil compounds using continuous heart-cut multi-dimensional gas chromatography-mass spectrometry. J Chromatogr A 2011, 1218 (18), 2626-34.
    6. Liao, W. C.; Ou-Yang, C. F.; Wang, C. H.; Chang, C. C.; Wang, J. L., Two-dimensional gas chromatographic analysis of ambient light hydrocarbons. J Chromatogr A 2013, 1294, 122-9.
    7. Lewis, A. C.; Carslaw, N.; Marriott, P. J.; Kinghorn, R. M.; Morrison, P.; Lee, A. L.; Bartle, K. D.; Pilling, M. J., A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 2000, 405 (6788), 778-81.
    8. Liu, Z.; Phillips, J. B., Comprehensive Two-Dimensional Gas Chromatography using an On-Column Thermal Modulator Interface. Journal of Chromatographic Science 1991, 29 (6), 227-231.
    9. Phillips, J. B.; Beens, J., Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. Journal of Chromatography A 1999, 856 (1-2), 331-347.
    10. Seeley, J. V.; Seeley, S. K., Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 2013, 85 (2), 557-78.
    11. Prata, P. S.; Alexandrino, G. L.; Mogollon, N. G.; Augusto, F., Discriminating Brazilian crude oils using comprehensive two-dimensional gas chromatography-mass spectrometry and multiway principal component analysis. J Chromatogr A 2016, 1472, 99-106.
    12. Dunmore, R.; Hopkins, J.; Lidster, R.; Mead, M.; Bandy, B.; Forster, G.; Oram, D.; Sturges, W.; Phang, S.-M.; Samah, A.; Hamilton, J., Development of a Combined Heart-Cut and Comprehensive Two-Dimensional Gas Chromatography System to Extend the Carbon Range of Volatile Organic Compounds Analysis in a Single Instrument. Separations 2016, 3 (3), 21.
    13. Wang, C. H.; Chiang, S. W.; Wang, J. L., Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. J Chromatogr A 2010, 1217 (3), 353-8.
    14. Bahaghighat, H. D.; Freye, C. E.; Synovec, R. E., Recent advances in modulator technology for comprehensive two dimensional gas chromatography. TrAC Trends in Analytical Chemistry 2018.
    15. Górecki, T.; Harynuk, J.; Panić, O., The evolution of comprehensive two-dimensional gas chromatography (GC×GC). Journal of Separation Science 2004, 27 (5-6), 359-379.
    16. Marriott, P. J.; Kinghorn, R. M., Studies on cryogenic trapping of solutes during chromatographic elution in capillary gas chromatography. Journal of High Resolution Chromatography 1996, 19 (7), 403-408.
    17. Beens, J., The role of gas chromatography in compositional analyses in the petroleum industry. TrAC Trends in Analytical Chemistry 2000, 19 (4), 260-275.
    18. Adahchour, M.; Beens, J.; Brinkman, U. A. T., Single-jet, single-stage cryogenic modulator for comprehensive two-dimensional gas chromatography (GC × GC). The Analyst 2003, 128 (3), 213-216.
    19. Beens, J.; Adahchour, M.; Vreuls, R. J. J.; van Altena, K.; Th. Brinkman, U. A., Simple, non-moving modulation interface for comprehensive two-dimensional gas chromatography. Journal of Chromatography A 2001, 919 (1), 127-132.
    20. Harynuk, J.; Górecki, T., New liquid nitrogen cryogenic modulator for comprehensive two-dimensional gas chromatography. Journal of Chromatography A 2003, 1019 (1-2), 53-63.
    21. Adahchour, M.; Beens, J.; Vreuls, R. J. J.; Brinkman, U. A. T., Recent developments in comprehensive two-dimensional gas chromatography (GC×GC). TrAC Trends in Analytical Chemistry 2006, 25 (5), 438-454.
    22. Deans, D. R., A new technique for heart cutting in gas chromatography [1]. Chromatographia 1968, 1 (1-2), 18-22.
    23. Seeley, J. V.; Kramp, F.; Hicks, C. J., Comprehensive Two-Dimensional Gas Chromatography via Differential Flow Modulation. Analytical Chemistry 2000, 72 (18), 4346-4352.
    24. Bueno, P. A.; Seeley, J. V., Flow-switching device for comprehensive two-dimensional gas chromatography. Journal of Chromatography A 2004, 1027 (1-2), 3-10.
    25. LaClair, R. W.; Bueno, P. A.; Seeley, J. V., A systematic analysis of a flow-switching modulator for comprehensive two-dimensional gas chromatography. Journal of Separation Science 2004, 27 (5-6), 389-396.
    26. Seeley, J. V.; Micyus, N. J.; Bandurski, S. V.; Seeley, S. K.; McCurry, J. D., Microfluidic deans switch for comprehensive two-dimensional gas chromatography. Anal Chem 2007, 79 (5), 1840-7.
    27. Firor, R. L., Operation and Applications of Differential Flow Modulation. 2010.
    28. Griffith, J. F.; Winniford, W. L.; Sun, K.; Edam, R.; Luong, J. C., A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A 2012, 1226, 116-23.
    29. Shifin Xu , J. L., Juan Aybar , Armando Miliazza Roger Firor, Characterization of a New Reversed Flow Modulator for GCXGC. 2014.
    30. Mostafa, A.; Edwards, M.; Gorecki, T., Optimization aspects of comprehensive two-dimensional gas chromatography. J Chromatogr A 2012, 1255, 38-55.
    31. Duhamel, C.; Cardinael, P.; Peulon-Agasse, V.; Firor, R.; Pascaud, L.; Semard-Jousset, G.; Giusti, P.; Livadaris, V., Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography. J Chromatogr A 2015, 1387, 95-103.
    32. Analytical, S., GC×GC Applications Guide. 2017.
    33. Dubois, L. M.; Perrault, K. A.; Stefanuto, P. H.; Koschinski, S.; Edwards, M.; McGregor, L.; Focant, J. F., Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood. J Chromatogr A 2017, 1501, 117-127.
    34. Analytical, S., Comprehensive analysis of coffee bean extracts by GC×GC–TOF MS. 2017, White Paper 002.
    35. Khummueng, W.; Harynuk, J.; Marriott, P. J., Modulation ratio in comprehensive two-dimensional gas chromatography. Anal Chem 2006, 78 (13), 4578-87.
    36. Zhu, S., Effect of column combinations on two-dimensional separation in comprehensive two-dimensional gas chromatography: estimation of orthogonality and exploring of mechanism. J Chromatogr A 2009, 1216 (15), 3312-7.
    37. Ryan, D.; Morrison, P.; Marriott, P., Orthogonality considerations in comprehensive two-dimensional gas chromatography. Journal of Chromatography A 2005, 1071 (1-2), 47-53.
    38. Wu, J.; Lu, X.; Tang, W.; Kong, H.; Zhou, S.; Xu, G., Application of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry in the analysis of volatile oil of traditional Chinese medicines. Journal of Chromatography A 2004, 1034 (1-2), 199-205.
    39. Adahchour, M.; Beens, J.; Vreuls, R. J. J.; Batenburg, A. M.; Brinkman, U. A. T., Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: application to food analysis. Journal of Chromatography A 2004, 1054 (1-2), 47-55.
    40. Adahchour, M.; Beens, J.; Brinkman, U. A., Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A 2008, 1186 (1-2), 67-108.
    41. Beens, J.; Brinkman, U. A. T., Comprehensive two-dimensional gas chromatography—a powerful and versatile technique. The Analyst 2005, 130 (2), 123-127.
    42. HENRY P. LONGERICH, S. E. J. A. D., Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation. Journal of Analytical Atomic Spectrometry 1996, 11, 899-904.
    43. Frysinger, G. S.; Gaines, R. B., Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometric Detection (GC × GC/MS) Applied to the Analysis of Petroleum. Journal of High Resolution Chromatography 1999, 22 (5), 251-255.
    44. Purcaro, G.; Tranchida, P. Q.; Ragonese, C.; Conte, L.; Dugo, P.; Dugo, G.; Mondello, L., Evaluation of a rapid-scanning quadrupole mass spectrometer in an apolar x ionic-liquid comprehensive two-dimensional gas chromatography system. Anal Chem 2010, 82 (20), 8583-90.
    45. van Deursen, M.; Beens, J.; Reijenga, J.; Lipman, P.; Cramers, C.; Blomberg, J., Group-Type Identification of Oil Samples Using Comprehensive Two- Dimensional Gas Chromatography Coupled to a Time-of-Flight Mass Spectrometer (GC×GC-TOF). Journal of High Resolution Chromatography 2000, 23 (7-8), 507-510.
    46. Ochiai, N.; Ieda, T.; Sasamoto, K.; Fushimi, A.; Hasegawa, S.; Tanabe, K.; Kobayashi, S., Comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry and simultaneous nitrogen phosphorous and mass spectrometric detection for characterization of nanoparticles in roadside atmosphere. J Chromatogr A 2007, 1150 (1-2), 13-20.
    47. Yang, W.; Omaye, S. T., Air pollutants, oxidative stress and human health. Mutat Res 2009, 674 (1-2), 45-54.
    48. 行政院環保署, 揮發性有機物空氣污染管制及排放標準. 2013.
    49. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292 (5517), 719-23.
    50. Hamilton, J. F.; Lewis, A. C., Monoaromatic complexity in urban air and gasoline assessed using comprehensive GC and fast GC-TOF/MS. Atmospheric Environment 2003, 37 (5), 589-602.
    51. Xu, X.; Stee, L. L. P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R. J. J.; Brinkman, U. A.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC × GC) measurements of volatile organic compounds in the atmosphere. Atmospheric Chemistry and Physics 2003, 3 (3), 665-682.
    52. Saxton, J. E.; Lewis, A. C.; Kettlewell, J. H.; Ozel, M. Z.; Gogus, F.; Boni, Y.; Korogone, S. O. U.; Serça, D., Isoprene and monoterpene measurements in a secondary forest in northern Benin. Atmospheric Chemistry and Physics 2007, 7 (15), 4095-4106.
    53. Allen, G.; Vaughan, G.; Bower, K. N.; Williams, P. I.; Crosier, J.; Flynn, M.; Connolly, P.; Hamilton, J. F.; Lee, J. D.; Saxton, J. E.; Watson, N. M.; Gallagher, M.; Coe, H.; Allan, J.; Choularton, T. W.; Lewis, A. C., Aerosol and trace-gas measurements in the Darwin area during the wet season. Journal of Geophysical Research 2008, 113 (D6).
    54. 王珮霞, 全面二維氣相層析技術分析汽車尾氣中揮發性有機化合物成分. 碩士論文 2016, 國立中央大學.
    55. 行政院環保署, 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法(NIEA A 505.12B). 2013.
    56. 蘇源昌, 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用. 博士論文 2011, 國立中央大學.
    57. Simo, R.; Grimalt, J. O.; Albaiges, J., Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography. Journal of Chromatography A 1993, 655 (2), 301-307.
    58. Tanner, D.; Helmig, D.; Hueber, J.; Goldan, P., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. J Chromatogr A 2006, 1111 (1), 76-88.
    59. Zhang, Z. M.; Chen, S.; Liang, Y. Z., Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135 (5), 1138-46.
    60. Cordero, C.; Rubiolo, P.; Cobelli, L.; Stani, G.; Miliazza, A.; Giardina, M.; Firor, R.; Bicchi, C., Potential of the reversed-inject differential flow modulator for comprehensive two-dimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity. J Chromatogr A 2015, 1417, 79-95.

    QR CODE
    :::