跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韡鼐
Wei-Nai Chen
論文名稱: 中壢上空10–30公里間的卷雲、氣膠、溫度的測量與光散射性質之研究
The measurements and scattering propertites of aerosol, cirrus, and temperature between 10-30 km above Chung_li
指導教授: 倪簡白
Jan-Bai Nee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 91
語文別: 中文
論文頁數: 105
中文關鍵詞: 光達卷雲氣膠溫度
外文關鍵詞: Lidar, cirrus, aerosol, temperature
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文報告並討論了我們在1999–2001 年間以Rayleigh/Mie Lidar (光達) 遙測10–30 公里的夜間的大氣溫度、卷雲、以及氣膠的方法與結果。我們詳細分析了溫度計算以及以光達方程式解出背向散射係數的各種可能誤差, 以此決定光達系統的觀測操作條件。在溫度的
    測量上, 我們除了以背景氣膠對散射光訊號作修正之外, 並提出新的低空大氣密度的演算法來提高溫度計算的準確性。溫度的測量結果除了與氣象局的探空資料相當吻合之外, 並顯示出光達在研究大氣溫度的長期與短期性變化的潛力。卷雲及氣膠的測量結果除了與衛星的氣膠與雲頂高度資料作比較之外, 我們並針對卷雲發展出估計 Lidar Ratio 與多重散射因子的方法, 降低了卷雲光散射性質的可能誤差。我們發現目前平流層背景氣膠的高度分佈主要在25–30 公里之間, 而卷雲則集中出現在夏季的對流層頂附近, 高度分佈則顯現出熱帶與副熱帶的混和形式。此外, 對流層氣膠的高度分佈被發現可能與卷雲有關, 而卷雲本身的消偏振率與消光係數則顯示出卷雲的各種光散射性質可能主要與卷雲的粒徑有關。


    The Rayleigh/Mie Lidar measurements about the aerosol, cirrus, and temperature between 10-30 km above Chung_li are reported in this thesis. The analysis methods and errors was studied in detail. The results are compared with HALOE satellite data and showing good agrees. The liscattering properties are found to be relative with the size of cirrus particles.

    1 論文簡介1 1.1 溫度的測量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 平流層氣膠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 卷雲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 光達的測量與計算理論基礎6 2.1 光達方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 卷雲與氣膠的光散射性質. . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 背向散射係數與背向散射比– 光達方程式的解. . . . . . . . . . 8 2.2.2 消光係數與光學厚度. . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 卷雲的Lidar Ratio 與多重散射因子. . . . . . . . . . . . . . . . . . . 17 2.3.1 Lidar Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 多重散射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 消偏振率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 大氣溫度與密度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 溫度演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 大氣密度的推算. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.3 誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 其他. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 空氣的背向散射係數. . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 臭氧的吸收. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.3 水氣的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 偏振光達之系統裝置34 3.1 偏振光達. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 望遠鏡與雷射光束的疊合. . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 光子計數系統的非線性效應. . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Dead Time 效應. . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.2 光電管的飽和. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 衛星與氣象局探空資料. . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 背景氣膠43 4.1 氣膠的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 氣膠的背向散射比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 氣膠的Lidar Ratio 與粒徑分佈. . . . . . . . . . . . . . . . . . . . . 49 4.4 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 高對流層與低平流層溫度54 5.1 典型的溫度測量結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 對流層頂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 卷雲60 6.1 典型觀測到的卷雲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 卷雲的高度分佈. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 卷雲的光散射性質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.1 背向散射比與厚度. . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.2 光學厚度與消光係數. . . . . . . . . . . . . . . . . . . . . . . 71 6.3.3 Lidar Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.4 消偏振率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7 總結86 7.1 氣膠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 溫度測量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 卷雲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.4 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A Gobbi 的氣膠參數式...........................................89 B 一些探空與衛星資料的統計結果91 B.1 溫度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 B.2 相對濕度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 B.2.1 氣象局探空資料. . . . . . . . . . . . . . . . . . . . . . . . . . 92 B.2.2 HALOE 衛星資料. . . . . . . . . . . . . . . . . . . . . . . . 93 B.3 風向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 B.4 風速. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 B.5 冰的蒸汽壓與溫度的關係. . . . . . . . . . . . . . . . . . . . . . . . . 96 參考文獻

    [1] 陳韡鼐, 以雷射雷達量測高空溫度, 中央大學物理系碩士論文, 1996.
    [2] 林仲懿, 雷射雷達對卷雲微物理性質之研究, 中央大學物理系碩士論文, 1997.
    [4] 王寶貫, 雲物理, 渤海堂文化公司, 1996.
    [4] 鄒進上, 高空氣候學, 名文書局, 1992
    [5] Ackermann, J., The extinction-to-backscatter ratio of tropospheric aerosol:
    A numerical study, J. Atmos. and Oceanic Tech. 15, 1043–1050, 1998
    [6] Antu˜na, J.C., A. Robock, G.L. Stenchikov, L.W. Thomason, and J.E.
    Barnes, Lidar validation of SAGE II aerosol measurements after the 1991
    Mount Pinatubo eruption, J. of Geophys. Res. 107, 10.1029/2001JD001441,
    2002.
    [7] Baker, M.B., Cloud microphysics and climate, Science 276, 1072-1078, 1997.
    [8] Baray, J.L., G. Ancellet, F.G. Taupin, M. Bessafi, S. Baldy, and P. Keckhut,
    Subtropical tropopause break as a possible stratospheric source of ozone in
    the tropical tropopause, J. of Atmos. and Solar–Terr. Phys. 60, 27–36, 1998.
    [9] Barnes, J.E. and D.J. Hofmann, Variability in the stratospheric background
    aerosol over Mauna Loa Observatory, Geophys. Res. Lett. 28, 2895–2898,
    2001.
    [10] Behrendt, A. and J. Reichardt, Atmospheric temperature profiling in the
    presence of clouds with a pure rotational rational Raman lidar by using
    of an interference-filter-based polychromator, Appl. Optics 39, 1372–1379,
    2000.
    [11] Born, M. and E. Wolf, Principles of Optics, 6th Edtion, Oxford, 1980.
    [12] Burkholder, J.D. and R.K. Talukdar, Temperature dependence of the ozone
    absorption spectrum over wavelength range 410 to 760 nm, Geophys. Res.
    Lett. 21, 581–584, 1994.
    [13] Burris, J., W. Heaps, B. Gary, W. Hoegy, L. Lait, T. McGee, M. Gross, U.N.
    Singh, Lidar temperature measurements during the tropical ozone transport
    experiment (TOTE)/Vortex Ozone Transport Experiment (VOTE) mission.
    J. of Geophys. Res. 103, 3505–3510, 1998
    [14] Chanin, M.L., A. Hauchecorne, Lidar observation of gravity and tidal waves
    in the stratosphere and mesosphere, J. of Geophys. Res. 86, 9715–9721, 1981.
    [15] Chen. W.N, C.W. Chiang, J.B. Nee, The Lidar ratio and depolarization
    ratio for cirrus clouds, Appl. Optics 41, 6470–6476, 2002a.
    [16] Chen, W.N., C.C. Tsao, J.B. Nee, Tropospheric and lower Stratospheric
    Temperature Measurement by Rayleigh Lidar over Chung-Li (25±N, 121±E),
    J. of Atmos. and Solar–Terr. Phys. submitted, 2002b.
    [17] Crutzen, P. J., The possible importance of CSO for the sulfate layer of the
    stratospheric aerosols, Geophys. Res. Lett. 3, 73–76, 1976.
    [18] Delisi, D. P. and T. J. Dunkerton, Seasonal variation of the semiannual
    oscillation, J. Atmos. Sci. 45, 2772-2787, 1988.
    [19] Deshler, T., B. Johnson, and W.R. Rozier, Balloonborne measurements of
    Pinatubo aerosol during 1991 and 1992 at 41N: vertical profiles, size distribution, and volatility, Geophys. Res. Lett. 20, 143–1438, 1993.
    [20] Donovan, D.P., Whiteway, J.A., Carswell, A.I., Correction for nonlinear
    photo-counting e®ects in lidar system, Appl. Optics 32, 6742–6753, 1993.
    [21] Donovan, D.P. and A.C.A.P. van Lammeren, First ice cloud e®ective particle
    size parameterization based on combined lidar and radar data, J. of Geophys.
    Res. 29, 10.1029/2001GL013731, 2002.
    [22] Danielsen, E. F, In situ evodence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by large-scale upwelling in tropical cyclone, J. of Geophys. Res. 98, 8665–8682, 1993.
    [23] Eloranta, E.W., Practical model for the calcuation of multiply scattered
    lidar returns, Appl. Opt. 37, 2464–2472, 1998.
    [24] Fernald F.G., Analusis of atmospheric lidar observations – Some comments,
    Appl. Optics 23, 652–653, 1984.
    [25] Fiocco, G., and L.D. Smullin, Detection of scattering layers in the upper
    atmosphere (60–140 km) by optical radar, Nature 199, 1275-01275, 1963.
    [26] Folkin, I., M. Loewenstein, J. Podolake, S.J. Oltmans, M. Pro±tt, A barrier
    to vertical mixing at 14 km in the tropics: Evidence from ozonesonde and
    aircraft measurements, J. of Geophys. Res. 104, 22095–22102, 1999.
    [27] Fu, Q. and K.N. Liou, Parameterization of the Radiative properties of cirrus clouds, J. of the Atmos. Sci.50, 2008-2025, 1993.
    [28] Gettelman, A., W.J. Randel, F. Wu, and S.T. Massie, Transport of water
    vapor in the tropical tropopause layer, Geophys. Res. Lett. 29, 2002.
    [29] Gierens, K., H. Smit, P.H. Wang, U. Schumann, M. Helten, Icesupersaturated
    regions and subvisible cirrus in the northern midlatitude
    upper troposphere, J. Geophys. Res. 105, 22743–22753, 2000.
    [30] Gille, S.T., A. Hauchecorne, M.L. Chanin, Semidiurnal and diurnal tidal
    e®ects in the middle atmosphere as seen by Rayleigh lidar, J. of Geophys.
    Res. 96, 7579–7587, 1991.
    [31] Gobbi, G.P., Parameterization of stratospheric aerosol physical properties of the basic of Nd:YAG lidar observations, Appl. Optics 37, 4712–4720, 1998.
    [32] Gross, M.R., T.J. McGee, R.A. Ferrare, U.N. Singh, P. Kimvilakani, Temperature measurements made with a combined Rayleigh-Mie and Raman
    lidar, Appl. Optics 36, 5987–5995, 1997.
    [33] Gu, Y.Y., C.S. Gardner, P.A. Castleberg, G.C. Papen, M.C. Kelley, Validation of the Lidar In-Space Technology Experiment: stratosphere temperature
    and aerosol measurements, Appl. Optics 36, 5148–5157, 1997.
    [34] Guasta, M.D., M. Morandi, L. Stefanutti, B. Stein, J. Kolenda, P. Rairoux,
    J. P. Wolf, R. Matthey, and E. Kyro, Multiwavlength lidar observation of
    thin cirrus at the base of the Pinatubo stratospheric layer during the EASOE
    campaign, Geophys. Res. Lett. 21, 1339–1342, 1994.
    [35] Hansen, J., M. Sato, A. Lacis, and R. Ruedy, The missing climate forcing,
    Philos. Trans. R. Soc. London B 352, 231–240, 1997.
    [36] Hauchecorne, A., M.L. Chanin, Density and temperature profiles obtained
    by lidar between 35 and 70 km. Geophys. Res. Lett. 8, 565–569, 1980.
    [37] Highwood, E.J., Hoskins, B.J., The tropical tropopause, Q. J. Royal Meteor.
    Soc. 124, 1579–1604, 1998.
    [38] Hervig, M.E., T. Deshler, J.M. Russell III, Aerosol size distributions obtained from HALOE spectral extinction measurements, J. of Geophys. Res.
    103, 1573–1583, 1998.
    [39] Hervig, M. and M. McHugh, Cirrus detection using HALOE measurements,
    Geophys. Res. Lett. 26, 719–722, 1999.
    [40] Hervig, M. and T. Deshler, Evaluation of aerosol measurements from SAGE
    II, HALOE, and balloonborne optical particle counters, J. of Geophys. Res.
    107, 10.1029/2001JD000703, 2002.
    [41] Heymsfield, A.J., Cirrus uncinus generating cells and the evolution of cirroform clouds, J. of the Atmos. Sci.32, 799-805, 1975.
    [42] Heymsfield, A.J. and C.M.R. Platt, A parameterization of the particle size
    spectrum of ice clouds in terms of the ambient temperature and Ice Water
    Content, J. Atmos. Sci 41, 846–855, 1984.
    [43] Hobbs, P.V., Ice Physics, Oxford Express, 1974.
    [44] Holton, J., P. Haynes, M. McIntyre, A. Douglass, R. Rood, L. Pfister,
    Stratosphere-tropopause exchange, Rev. of Geophys. 33, 403–439, 1995.
    [45] Jensen, E.J., O.B. Toon, H.B. Selkirk, J.D. Spinhirne, and M.R. Schoeberl,
    On the formation and persistence of subvisible cloud cirrus clouds near the
    tropical tropopause, J. of Geophys. Res. 101, 21361–21375, 1996.
    [46] Knolenberg, R. G, K. Kelly, J.C. Wilson, Measurements of high number
    denisties of ice crystals in the tops of tropical cumulonimbus, J. of Geophys.
    Res. , 98, 8639–8664, 1993.
    [47] Klett, J.D., Stable analytical inversion solution for processing lidar returns, Appl. Optics 20, 211–220, 1981.
    [48] Leblanc, T., I.S. McDermid, A. Hauchecorne, P. Keckhut, Evaluation of
    optimization of lidar temperature analysis algorithms using simulated data,
    J. of Geophys. Res. 103, 6177–6187, 1998.
    [49] Ligda, M.G.H., Proc. Conf. Laser Technol., 1st, San Diego, Calif, 63–72,
    1963.
    [50] Liou, K.N., Influence of cirrus clouds on weather and climate processes: A
    global perspective, Mon. Wea. Rev. 114, 1167–1199, 1986.
    [51] Maiman, T.H., Stimualted optical radiation in Ruby, Nature 187, 493-494,
    1960.
    [52] McClung, F.J. and R.W. Hellwarth, Giant optical Pulsations from Ruby,
    Appl. Phys. 33, 828-829, 1962.
    [53] Mcfarquhar, G.M. and A.J. Heymsfield, Parameterization of tropical cirrus
    ice crystal size distributions and implications for radiative tranfser: results
    from CEPEX, J. of the Atmos. Sci.54, 2187–2200, 1997.
    [54] Measures R.M., Laser Remote Sensing – Fundamentals and Applications,
    John Wiley and Sons, 1984.
    [55] Meriwether, J.W., C.S. Gardner, A review of the mesosphere inversion layer
    phenomenon, J. of Geophys. Res. 105, 12405–12416, 2000.
    [56] Michelangeli, D.V., M. Allen, and Y.L. Yung, El Chichon volcanic aerosol:
    impact of radiative, thermal, and chemical perturbations, J. of Geophys.
    Res. 94, 18429–18443, 1989.
    [57] Mishchenko, M.I. and K. Sassen, Depolarization of lidar returns by small
    ice crystals – An application to contrails, Geophys. Res. Lett. 25, 309–312,
    1998.
    [58] Moosm¨uller, H. and T.D. Wilkerson, Combined Raman–elastic backscatter
    lidar method for the measurement of backscatter ratios, Appl. Optics 36,
    5144-5147, 1997.
    [59] Nedeljkovic, D., A. Hauchecorne, M. L. Chanin, Rotational raman lidar
    to measure the atmospheric-temperature from the ground to 30 km, IEEE
    Transactions on Geoscience and Remote Sensing 31, 90–101, 1993.
    [60] Nee, J.B., G.B. Wang, P.C. Lee, S.B. Lin, Lidar studies of particles and temperatures of the atmosphere -First results from National Central University
    Lidar, Radio Science 30, 1167–1175, 1995.
    [61] Nee, J.B., C.N. Len, W.N. Chen, C.I. Lin, Lidar detection of cirrus cloud in Chung-Li (25 N, 121 E), J. of the Atmos. Sci.55, 2249–2257, 1998.
    [62] Nee, J.B., S. Thulasiramana, W.N. Chen, M.V. Ratnam, D.N. Rao, Middle
    atmospheric temperature structure over two tropical locations, Chung Li
    (25±N, 121±E) and Gadanki (13.5±N; 79.2±E), J. of Atmos. and Solar–Terr.
    Phys. 64, 1311-1319, 2002.
    [63] Nicolas, F., L.R. Bissonnette, and P.H. Flamant, Lidar e®ective multiplescattering coefficents in cirrus clouds, Appl. Optics 36, 3458–3468, 1997.
    [64] Noel, V., H. Chepfer, G. Ledanois, A. Delaval, and P.H. Flamant, Classifi-
    cation of particle e®ective shape ratios in cirrus clouds based on the lidar
    depolarization ratio, Appl. Optics 41, 4245–4257, 2002.
    [65] Pal, S.R. and A.I. Carswell, Polarization properties of lidar backscattering from cloud, Appl. Optics 12, 1530–1535, 1973.
    [66] Palmer, K. and D. Williams, Optical constants of sulfuric acid; Application
    to the cloud of Venus?, Appl. Optics 14, 208–219, 1975.
    [67] Pinnick, R.G., J.M. Rosen, and D.J. Hofmann, Stratospheric aerosol measurements. III. Optical model calculations, J. of the Atmos. Sci.33, 304–313, 1976.
    [68] Pinnick, R.G., S.G. Jennings, P. Ch´ylek, Relationship between extinction,
    absorption, backscattering, mass content of sulfuric acid aerosols, J. of Geophys. Res. 85, 4059–4066, 1980.
    [69] Platt, C.M.R., Lidar and radiometric observations of cirrus clouds, J. of the Atmos. Sci.30, 1191–1204, 1973.
    [70] Platt, C.M.R, Lidar observation of a mixed-phase altostratus cloud, J. Appl. Meteor, 16, 339–345, 1977.
    [71] Platt, C.M.R., The e®ect of cirrus of varying optical depth on the extraterrestrial net radiative, Quart. J. Roy. Meteor. Soc. 107, 671–678, 1981.
    [72] Platt, C.M.R., J.C. Scott, and A.C. Dilley, Remote sounding of high Clouds.
    Part VI: Optical properties of midlatitude and tropical cirrus, J. of the
    Atmos. Sci.44, 729–747, 1987.
    [73] Platt, C.M.R., S.A. Young, P.J. Manson, G.R. Patterson, S.C. Marson, R.T.
    Austin, and J.H. Churnside, The optical properties of equatorial cirrus from
    observations in the ARM Pilot Radiation Observation Experiment, J. of the
    Atmos. Sci.55, 1977–1996, 1998.
    [74] Platt, C.M.R., D.M. Winker, M.A. Vaughan, and S.D. Miller, Backscatterto-
    extinction ratio in the top layers of tropical mesoscale convective systems
    and in isolated cirrus from LITE observations, J. Appl. Meteor. 38, 1330–
    1345, 1999.
    [75] Prenni, A.J., M.E. Wise, S.D. Brooks, and M.A. Tolbert, Ice nucleation
    in sulfuric acid and ammonium sulfate particles, J. of Geophys. Res. 106,
    3037–3044, 2001.
    [76] Pueschel, R.F., Stratospheric aerosols: formation, properties, e®ects., J.
    Aerosol Sci. 27, 383–302, 1996.
    [77] Rajeev, K., K. Parameswaran, Iterative method for the inversion of multiwavelength lidar signals to determine aerosol-size distribution, Appl. Optics 37, 4690–4700, 1998.
    [78] Reid, G.C. and K.S. Gage, On the annual variation in height of the
    tropopause, J. Atmos. Sci. 38, 1928–1938, 1981.
    [79] Reid, G.C. and K.S. Gage, Interannual variations in the height of the tropical tropopause, J. of Geophys. Res. 90, 5629–5635, 1985.
    [80] Reid, G.C., Seasonal and interannual temperature-variations in the tropical
    stratosphere, J. of Geophys. Res. 99, 18923–18932, 1994.
    [81] Richner, H. and P. Viatte, The hydrostatic equation in the evaluation algorithm
    for radiosonde data, J. Atmos. and Oceanic Tech. 12, 649–656, 1995.
    [82] Rosen, J.M., N.T. Kjome, Balloon-borne measurements of the aerosol
    extinction-to-backscatter ratio, J. of Geophys. Res. 102, 11165–11170, 1997.
    [83] Sassen, K, M. Gri±n, and G.C. Dood, Optical scattering and microphysical
    properties of subvisible cirrus clouds, and climatic implications, J. Appl.
    Meteor. 28, 91–98, 1989.
    [84] Sassen, K., The polarization lidar technique for cloud research: A review and current assessment, Bull. of The Amer. Meteor. Soc. 72, 1848-1866, 1991.
    [85] Sassen, K. and B.S. Cho, Subvisual thin cirrus lidar database for satellite
    verification and climatological research, J. Appl. Meteor 31, 1275-1285, 1992.
    [86] Sassen, K., R.P. Benson, and J.D. Spinhirne, Tropical cirrus properties derived
    from TOGA/COARE airborne polarization lidar, Geophys. Res. Lett.
    27, 673–676, 2000.
    [87] Schotland, R.M., K. Sassen, and R.J. Stone, Observations by lidar and linear
    depolarization ratios by hydrometeors, J. Appl. Meteor 10, 1011–1017, 1971.
    [88] Schawlow, A.L. and C.H. Townes, Infrared and optical Masers, Phys. Rev.
    112, 1940–1949, 1958.
    [89] Sherwood, S.C., On moistening of the tropical troposphere by cirrus clouds,
    J. of Geophys. Res. 104, 11949–11960, 1999.
    [90] Singh, U.N., P. Keckhut, T.J. McGee, M.R. Gross, A. Hauchecorne, E.F.
    Fishbein, J.W. Waters, J. Gille, A.E. Roche, J.M. Russell III, Stratospheric
    temperature measurements by two collocated NDSC lidars during UARS
    validation campaign, Geophys. Res. Lett. 22, 1201–1204, 1995.
    [91] Steinbrecht, W., H. Claude, U. Kohler, K.P. Hoinka, Correlation between
    tropopause height and total ozone: Implication for long-term changes, J. of
    Geophys. Res. 103, 19183–19192, 1998.
    [92] SPARC, Assessment of Water Vapor in the Upper Troposphere and Lower
    Stratosphere, WMO/TD-1043, Stratospheric Processes and Their Role In
    Climate, World Meteorological Organization, Paris, 2000.
    [93] Tabazadeh, A., E.J. Jensen, O.B. Toon, A model decription for cirrus nucleation
    from homogeneous freezing of sulfate aerosols, J. of Geophys. Res.
    102, 23845–23850, 1997.
    [94] Takano, Y., K.N. Liou, Radiative transfer in cirrus clouds. Part III: Light
    scattering by irregular ice crystals, J. Atmos. Sci. 53, 7, 818-837, 1995.
    [95] Thulasiraman, S., J.B. Nee, J.B., W.N. Chen, J.H. Chen, Temporal characteristics
    of tropopause and lower stratosphere over Taiwan during 1990–1995,
    J. of Atmos. and Solar–Terr. Phys. 61, 1299–1306, 1999.
    [96] Turco, R.P., R.C. Whitten, and O.B. Toon, Stratospheric aerosol: observation
    and theory, Rev. Geophys. 20, 233–279, 1982.
    [97] Wang, P.H., P. Minnis, M.P. McCormick, G.S. Kent, and K.M. Skeens, A
    6-year climatology of cloud occurrence frequency from Stratospheric Aerosol
    and Gas Experiment II observations (1985-1990), J. of Geophys. Res. 101,
    29407-29429, 1996.
    [98] Wang, Z. and K. Sassen, Cirrus Cloud Microphysical Property Retrieval
    Using Lidar and Radar Measurements, Part I: Algorithm Description and
    Comparison with In Situ Data, J. Appl. Meteor 41, 218–229, 2001.
    [99] Wang, Z. and K. Sassen, Cirrus Cloud Microphysical Property Retrieval
    Using Lidar and Radar Measurements, Part II: Midlatitude Cirrus Microphysical
    and Radiative Properties, Appl. Optics 59, 2291–2302, 2002.
    [100] Weber, A., S.P.S. Porto, L.E. Cheesman, and J.J. Barrett, High-resolution
    Raman spectroscopy of gases with cw-laser excitation, J. Opt. Soc. Am. 57,
    19–28, 1967.
    [101] Wilson, R., M.L. Chanin, and A. Hauchecorne, Gravity waves in the middle
    atmosphere by Rayleigh lidar. 1. Case studies, J. of Geophys. Res. 96, 5153–
    5167, 1991.
    [102] Whitten, R.C., The stratospheric aerosol layer, Springer-Verlag, 1992.
    [103] World Meteorological Organization, Scientific Assessment of Ozone Depletion, WMO Report 37, 1995.
    [104] Yulaeva, E., J.R. Holton, and J.M. Wallace, On the cause of the annual
    cycle in tropical lower-stratospheric temperature, J. of the Atmos. Sci.51,
    169–174, 1994.
    [105] Zuev, V.V., V.D. Burlokav, A.V. El’nikov, Ten Year (1986-1995) of Lidar
    Observations of Temporal and Vertical Structure of Stratospheric Aerosols
    Over Siberia, J. Aerosol Sci. 29, 1179–1187, 1998.

    QR CODE
    :::