| 研究生: |
沈裕智 Y-Jr Shen |
|---|---|
| 論文名稱: |
變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討 The Effect of Various Loading and Residual Substrate on anoxic Phosphate-release/uptake Characteristics |
| 指導教授: |
歐陽嶠暉
Chaio-Fuei Ouyang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 脫硝除磷菌 、突變負荷 、營養鹽去除程序 、脫硝攝磷 、脫硝釋磷 |
| 外文關鍵詞: | Denitrifying phosphate accumulating organisms, shock loading, biological nutrient removal processes, denitrification/ phosphate uptake, denitrification/ phosphate release |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因此,本研究將TNCU-I程序操作於SRT=10天,變動進流基質濃度以觀察TNCU-I程序對突變負荷的忍受能力,並設計一系列之批次實驗,以TNCU-I程序之活性污泥探討在不同內部碳源濃度的條件下,有不同濃度外部殘留碳源存在之缺氧/好氧的狀態下,微生物之缺氧脫硝釋磷/脫硝攝磷及好氧釋磷/攝磷之反應行為。
由實驗結果顯示,TNCU-I程序在各種不同的變動負荷下,對COD都能維持在相當高的去除率,而N、P的去除,雖沒有如去除有機碳那麼穩定,不過也都能快速地恢復穩定,此點證實TNCU-I程序對變動負荷確實具有較高的處理穩定性。
在不同內部碳源濃度的條件下,有外部殘留碳源存在時,在缺氧/好氧的狀態下,由微生物之缺氧脫硝釋磷/脫硝攝磷及好氧釋磷/攝磷之批次實驗,可看出就相同內部碳源及外部殘留碳源的情況下,利用O2當電子接受者的比攝磷率比利用NO3當電子接受者的比攝磷率高。且攝磷反應受電子接受者的影響比受外部殘留COD濃度高低的影響還明顯。整體而言,內部碳源濃度越高,外部殘留COD濃度越低,越傾向於攝磷。
在相同的內部碳源濃度情況下,外部殘留碳源濃度越高,其比脫硝率就越高。且在相同的外部殘留碳源濃度情況下,內部碳源濃度越高,其比脫硝率也越高。整體而言,不論內部碳源越高或外部碳源越高,其比脫硝率都會越高。
Thus, our group developed a novel process (TNCU-I process) that added a RBC in the aerobic tank of the traditional A2O process. The sludge retention time of the nitrifier can be extended on the RBC to reduce the sludge retention time of activated sludge to solve the conflict the SRT between PAO and nitrifier. Consequently, the anoxic zone of the activated sludge can increased to enhance the present of denitrifying phosphate accumulating organisms (DNPAO) to solve the competition of carbon source between de-phosphate and denitrogen. Additionally, the tolerance ability of shock loading could be increased due to the present of RBC.
In light of above discussion, this study investigated the influence of shock loading on the performance of TNCU-I. Additionally, the anoxic/aerobic phosph-ate uptake/release reactions under various initial COD and residue COD conditions of TNCU-I process were also performed by a series of batch experiments.
The results revealed that the TNCU-I process showed excellent performance of COD removal under various shock loading. Although the performance of nitrogen and phosphate removal was not so good as COD, it could return to the steady state rapidly under various shock loading. This improved that the TNCU-I process showed good stability of treating shock loading influent.
The results of batch experiments showed that the potential of phosphate uptake was dynamic. It increased with the initial COD increased, the initial PHA increased, and the residue COD decreased. Furthermore, the phosphate uptake/release influenced by electron acceptor (oxygen of nitrate) was more significantly than residue COD concentrations. Additionally, the specific denitrification rate increased with the initial COD and the residue COD increased.
Barker, P. S. and Dold, P. L. “Denitrification behaviors in biological excess phosphorus removal activated sludge systems,” Wat.Res., Vol. 30, No.4, pp. 769-780 (1996).
Barker, P. S. and Dold, P. L. “Denitrification behaviors in biological excess phosphorus removal activated sludge systems,” Wat.Res., Vol. 30, No.4, pp. 769-780 (1996).
Barker, P. S. and Dold, P. L. “Denitrification behaviors in biological excess phosphorus removal activated sludge systems,” Wat.Res., Vol. 30, No.4, pp. 769-780 (1996).
Comeau, Y., Hall, K. J. Hancock, R. E. W. and Oldham, W. K., “Biochemical model for enhanced biological phosphorus removal, “Wat. Res., Vol. 20, No. 12, pp. 1511-1521 (1986).
Comeau, Y., Hall, K. J. Hancock, R. E. W. and Oldham, W. K., “Biochemical model for enhanced biological phosphorus removal, “Wat. Res., Vol. 20, No. 12, pp. 1511-1521 (1986).
Comeau, Y., Hall, K. J. Hancock, R. E. W. and Oldham, W. K., “Biochemical model for enhanced biological phosphorus removal, “Wat. Res., Vol. 20, No. 12, pp. 1511-1521 (1986).
Comeau, Y., Hall, K. J. Hancock, R. E. W. and Oldham, W. K., “Biochemical model for enhanced biological phosphorus removal, “Wat. Res., Vol. 20, No. 12, pp. 1511-1521 (1986).
Chuang, S. H., Ouyang, C. F., "Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition", Wat. Res., Vol. 30, No. 12, pp. 2961-2968 (1996a).
Chuang, S. H., Ouyang, C. F., "Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition", Wat. Res., Vol. 30, No. 12, pp. 2961-2968 (1996a).
Chuang, S. H., Ouyang, C. F., Yuang, H. C. and You, S. J., "Effects of SRT and DO on nutrient removal in a combined AS-Biofilm process", Wat. Sci. Tech. Vol. 36. No. 12. pp.19-27 (1997a)
Chuang, S. H., Ouyang, C. F., Yuang, H. C. and You, S. J., "Effects of SRT and DO on nutrient removal in a combined AS-Biofilm process", Wat. Sci. Tech. Vol. 36. No. 12. pp.19-27 (1997a)
Chuang, S. H., Ouyang, C. F., Yuang, H. C. and You, S. J., "Effects of SRT and DO on nutrient removal in a combined AS-Biofilm process", Wat. Sci. Tech. Vol. 36. No. 12. pp.19-27 (1997a)
Hascoet, M. C. and Florentz, M., “Influence of nitrate on biological phosphorus removal from wastewater ,” Water SA, Vol.11, No. 1, pp. 1-8(1985).
Henze, M., Kristensen, G. H. and Strube, Rune., “Rate-capacity characterization of wastewater for nutrient removal processes”, Wat. Sci. Tech., Vol. 29, No. 7, pp. 101-107 (1994).
Henze, M., Kristensen, G. H. and Strube, Rune., “Rate-capacity characterization of wastewater for nutrient removal processes”, Wat. Sci. Tech., Vol. 29, No. 7, pp. 101-107 (1994).
Jenkins, D., Tandoi, V., “the applied microbiology of enhanced biological phosphate removal accomplishments and needs,” Wat. Res., Vol. 25, pp. 1471-1478(1991).
Jenkins, D., “Handout for the workshop of operation and control in activated sludge systems,” Graduate Institute of Environmental Engineering, National Central University(1992).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Kerrn-Jespersen, J. P. and Henze M.,”Biological phosphorus uptake under anoxic and aerobic conditions”, Wat. Res. Vol. 27, No. 4, pp. 617-624 (1993).
Loosdrecht M.C.M. van, Pot M. A. and Heijnen J.J., “Imorortance of bacterial storage polymers in bioprocesses”, Wat. Sci. Tech., Vol.35, No.1, pp.41-47 (1997).
Lotter, L. H., “The role of bacterial phosphorus metabolism in enhanced phosphorus removal from the activared sludge process,“ Wat. Sci. Tech. Vol. 17, pp. 127-138(1985).
Matsuo T., Mino, T., and Satoh, H., “Metabolism of organic substrate in anaerobic phase of biological phosphorus uptake process,” Wat. Sci. Tech. Vol. 25, No. 6, pp. 83-92(1992).
Matsuo T., Mino, T., and Satoh, H., “Metabolism of organic substrate in anaerobic phase of biological phosphorus uptake process,” Wat. Sci. Tech. Vol. 25, No. 6, pp. 83-92(1992).
Matsuo T., Mino, T., and Satoh, H., “Metabolism of organic substrate in anaerobic phase of biological phosphorus uptake process,” Wat. Sci. Tech. Vol. 25, No. 6, pp. 83-92(1992).
Mino, T., San Pedro D. C., Yamamoto S. and Matsuo T., ”Application of the IAWQ activated sludge model to nutrient removal process”, Wat. Sci. Tech., Vol.35, No.8, pp.111-118 (1997).
Oa, S. W. and Choi, E., “Phosphorus removal from nightsoil with sequencing batch reactor (SBR)”, Wat. Sci. Tech., Vol. 36, No. 12, pp. 55-60 (1997)
Ostgaard K., Christensson M., Lie E., Jonsson K. and Welander T.,”Anoxic biological phosphorus removal in a Full- Scale UCT process”, Wat. Res., Vol. 31, No. 11, pp. 2719-2726 (1997).
Ostgaard K., Christensson M., Lie E., Jonsson K. and Welander T.,”Anoxic biological phosphorus removal in a Full- Scale UCT process”, Wat. Res., Vol. 31, No. 11, pp. 2719-2726 (1997).
Scheer, H. and Seyfried, C. F..,”Enhanced biological phosphate removal:Modelling and design in theory and practice”, Wat. Sci. Tech., Vol. 34, No. 1-2, pp. 57-66 (1996).
Scheer, H. and Seyfried ,C. F., “Enhanced biological phosphate removal: Modelling and design in theort and practice”, Wat. Sci. Tech., Vol. 35, No. 10, pp. 43-52 (1997).
Scheer, H. and Seyfried ,C. F., “Enhanced biological phosphate removal: Modelling and design in theort and practice”, Wat. Sci. Tech., Vol. 35, No. 10, pp. 43-52 (1997).
Scheer, H. and Seyfried ,C. F., “Enhanced biological phosphate removal: Modelling and design in theort and practice”, Wat. Sci. Tech., Vol. 35, No. 10, pp. 43-52 (1997).
Smolders,G.J.F., van Loosdrecht, M. C. M and Heijnen, J. J. “A metabolic model for the biological phosphorus removal process”, Wat. Sci. Tech., Vol. 31, No. 2, pp.79-93 (1995).
Smolders,G.J.F., van Loosdrecht, M. C. M and Heijnen, J. J. “A metabolic model for the biological phosphorus removal process”, Wat. Sci. Tech., Vol. 31, No. 2, pp.79-93 (1995).
Sorm R., Bortone G., Wanner J. and Tilche A., “Behaviour of activated sludge from a system anoxic phosphate uptake”, Wat. Sci. Tech., Vol. 37, No. 4-5, pp. 563-566 (1998).
Sorm R., Bortone G., Wanner J. and Tilche A., “Behaviour of activated sludge from a system anoxic phosphate uptake”, Wat. Sci. Tech., Vol. 37, No. 4-5, pp. 563-566 (1998).
Su, J. L. and Ouyang, C. F., “Nutrient removal using a combined process with activated sludge and fixed biofilm,” Wat. Sci. Tech., Vol. 34, No. 1-2, pp.477-486 (1996).
Su, J. L. and Ouyang, C. F., “Nutrient removal using a combined process with activated sludge and fixed biofilm,” Wat. Sci. Tech., Vol. 34, No. 1-2, pp.477-486 (1996).
Wanner, J., Cech, J. S and Kos, M., “New process design for biological nutrient removal, “Wat. Sci. Tech., Vol. 25, No. 4-5, pp. 445-448 (1992).
Wanner, J., Cech, J. S and Kos, M., “New process design for biological nutrient removal, “Wat. Sci. Tech., Vol. 25, No. 4-5, pp. 445-448 (1992).
Wanner, J., Cech, J. S and Kos, M., “New process design for biological nutrient removal, “Wat. Sci. Tech., Vol. 25, No. 4-5, pp. 445-448 (1992).
Wanner, J., Cech, J. S and Kos, M., “New process design for biological nutrient removal, “Wat. Sci. Tech., Vol. 25, No. 4-5, pp. 445-448 (1992).
Wanner, J., Cech, J. S and Kos, M., “New process design for biological nutrient removal, “Wat. Sci. Tech., Vol. 25, No. 4-5, pp. 445-448 (1992).
Wentzel M. C., Ubisi M.F. and Ekama G.A., “Heterotrophic active biomass component of activated sludge mixed liquor”, Wat. Sci. Tech., Vol. 37, No. 4-5, pp. 79-87, (1998)