跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡正昇
Cheng-Sheng Chien
論文名稱: 以影像為基礎的定位系統
A visual-based positioning system
指導教授: 孫敏德
Min-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 42
中文關鍵詞: 定位系統影像處理智慧型手機擴增實境適地性服務
外文關鍵詞: LBS
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們參考了以影像做定位的一些研究,並在近幾年智慧型手機普及的基礎上,實作了一套以Android手機為運行環境,透過手機內建的相機進行即時影像分析,並融合手機中感測元件做姿態分析,完成實際可運行的定位系統,此系統的特色是不需要使用任何輔助裝置,可單獨在手機運行,環境建制費用極低,且可非常容易部署至一般消費者的智慧型手機上,實驗結果證明我們的定位系統在小範圍以及中範圍應用中提供優於GPS的定位精確度;在大範圍應用中,我們的系統也能夠提供足夠的精確度做為適地性服務及擴增實境領域的定位 。


    We implemented a visual-based positioning system on the Android-based smartphone. This system uses only build-in camera and sensors in an Android phone. The system works with no other assisted equipments, so it is low-cost and very easy to deploy to consumers with a mobile device. In addition, we conducted small, median, and large-scale field experiments to examine the accuracy and stability of our system. The results indicate that our visual-based positioning system is able to provide a much better accuracy in small and median-scale experiments compared with the global positioning system. In large-scale experiments, the system is able to provide enough accuracy for applications such as virtual augmentations and location-based services.

    1 Introduction 1 2 Related Work 2 2.1 Existing Visual-based Positioning Systems 2 2.2 Filter Algorithms 3 2.2.1 Simple Moving Average Filter 3 2.2.2 Complementary Filter 3 3 Implementation 5 3.1 Notations 5 3.2 Measurable Reference Point (MRP) 5 3.3 Angle Measurement 6 3.4 Distance Measurement 7 3.4.1 Basic Case 8 3.4.2 MRP Shifted on Object Plane 8 3.4.3 Unparalleled Relationship 11 3.5 Coordinate System Transformation 12 3.6 Hardware 15 3.7 Software 15 3.8 Magnetic Noise Issue 16 3.9 Gyroscope Offset Issue 18 3.10 Startup Gyroscope Initial Values 18 4 Performance 19 4.1 Small-scale field experiments 19 4.2 Median-scale field experiments 22 4.3 Large-scale field experiments 24 5 Conclusions 27 Reference 29

    [1] Anja Bekkelien, Michel Deriaz, and St ́ephane Marchand-Maillet. Bluetooth indoor positioning. 2012.
    [2] David Bernstein and Alain Kornhauser. An introduction to map matching for per- sonal navigation assistants. 1998.
    [3] Nick Bilton. Behind the google goggles, virtual reality. Published: February, 22, 2012.
    [4] David M Chen, Georges Baatz, K Koser, Sam S Tsai, Ramakrishna Vedantham, Timo Pylvanainen, Kimmo Roimela, Xin Chen, Jeff Bach, Marc Pollefeys, et al. City- scale landmark identification on mobile devices. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 737–744. IEEE, 2011.
    [5] Shane Colton and FRC Mentor. The balance filter. Presentation, Massachusetts Institute of Technology, 2007.
    [6] Android Developers. Android developer tools (adt) plugin for eclipse. URl: http://developer.android.com/tools/, 2013.
    [7] Android Developers. Sensors overview — android developers. http://developer. android.com/guide/topics/sensors/sensors_overview.html, 2013.
    [8] Brian Ferris, Dieter Fox, and Neil D Lawrence. Wifi-slam using gaussian process latent variable models. In IJCAI, volume 7, pages 2480–2485, 2007.
    [9] Aaron Ganick and Daniel Ryan. Light positioning system using digital pulse recog- nition, January 31 2013. US Patent 20,130,028,475.
    [10] Paul C. Glasser. An introduction to the use of complementary an in- troduction to the use of complementary filters for fusion of sensor data. http://www.glassercommunications.com/paul/samples.htm.
    [11] Harlan Hile and Gaetano Borriello. Positioning and orientation in indoor environ- ments using camera phones. Computer Graphics and Applications, IEEE, 28(4):32– 39, 2008.
    [12] Yunye Jin, Hong-Song Toh, Wee-Seng Soh, and Wai-Choong Wong. A robust dead- reckoning pedestrian tracking system with low cost sensors. In Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on, pages 222– 230. IEEE, 2011.
    [13] H Kawaji, K Hatada, T Yamasaki, and K Aizawa. An image-based indoor positioning for digital museum applications. In Virtual Systems and Multimedia (VSMM), 2010 16th International Conference on, pages 105–111. IEEE, 2010.
    [14] Alasdair Mackintosh, Alexander Martin, Brian Brown, Christian Brunschen, and S Daniel. Zxing, open source library to read 1d/2d barcodes, 2012.
    [15] Alessandro Mulloni, Daniel Wagner, Istvan Barakonyi, and Dieter Schmalstieg. In- door positioning and navigation with camera phones. Pervasive Computing, IEEE, 8(2):22–31, 2009.
    [16] J Angelo Racoma. Indooratlas uses magnetic fields for location-awareness in buildings and large structures, 2013.
    [17] wikipedia. Angle of view.
    [18] wikipedia. Orthographic projection.
    [19] wikipedia. Simple moving average.
    [20] wikipedia. Spherical coordinate system.
    [21] wikipedia. Taipei 101.

    QR CODE
    :::