| 研究生: |
蘇宣佑 Syuan-You Su |
|---|---|
| 論文名稱: | A new multiscale finite element method with locally adaptive bubble function enrichment for convective-diffusive-reactive problems |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 多尺度有限元素法 、局部自適應 、對流-擴散-反應問題 |
| 外文關鍵詞: | multiscale finite element method, locally adaptive, convective-diffusive-reactive problem |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是針對 multiscale finite element method with adaptive bubble enrichment method (MsFEM\_bub)提出一種改進方法,期望使用更少的計算成本,達到與原數值方法相似的精確度,並藉由模擬對流-擴散-反應問題(convection-diffusion-reaction problem),呈現並比較數值結果。
我們發現那些真正需要更新的粗網格元素,無論是多尺度基底函數 (multiscale basis functions) 或是氣泡函數 (bubble function),通常都在數值結果產生劇烈變化的地方,而那些在平滑的地方,或是計算前後解改變幅度很小的粗網格元素,是不需要更新的,可是 MsFEM\_bub 會將全部的粗網格元素都進行更新,這造成計算成本的浪費。所以根據這樣的想法,我們提出 multiscale finite element with local adaptive bubble function enhancement,只針對需要更新的粗網格元素進行計算,並對於其他不需要更新的粗網格元素不進行計算。實驗後發現透過這樣的方法,我們可以在減少計算成本的情況下,達到與 MsFEM\_bub 相近的數值結果。
In this thesis, we propose an improved method for multiscale finite element method with adaptive bubble enrichment method (MsFEM\_bub). We expected to use less computation cost to get the similar accuracy as the original numerical method. We would show and compare the numerical solutions by simulating the convection-diffusion-reaction problems. \\
We found that the coarse-grid elements that really need to update, no matter multiscale basis functions or bubble functions, are usually at the sharp place of the numerical solutions, and those coarse-grid elements which are at the smooth place, or a small change of the solution before and after update, do not need to update, but MsFEM\_bub will update all the coarse-grid elements, which would cause the waste of computation costs. So according to this idea, we propose multiscale finite element with local adaptive bubble function enhancement, only update the coarse-grid elements for those really need, and do not update for the others not need. After the experiment, we found that through this method, we can reduce the computation costs and get the similar numerical solutions as MsFEM\_bub.
[1] F. Ilinca and J-F Hétu. A new stabilized finite element method for reaction– diffusion problems: The source-stabilized petrov–galerkin method. Int J Numer Methods Eng, 75:1607–1630, 2008.
[2] P.-W. Hsieh and S.-Y. Yang. A new stabilized linear finite element method for solving reaction–convection–diffusion equations. Comput. Methods Appl. Mech. Eng., 307:362–382, 2016.
[3] A.N Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 32:199– 259, 1982.
[4] T.Y. Hou, F.-N. Hwang, P. Liu, and C.-C. Yao. An iteratively adaptive multiscale finite element method for elliptic PDEs with rough coefficients. J. Comput. Phys., 336:375–400, 2017.
[5] L.P Franca and F Valentin. On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation. Comput. Methods Appl. Mech. Eng., 190:1785–1800, 2000.
[6] L. P. Franca and C. Farhat. Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng., 123:299–308, 1995.
[7] Y. Efendiev and T. Y. Hou. Multiscale finite element methods: theory and applications, volume 4. 2009.
[8] Chien-Chou Yao. An iteratively adaptive multiscale finite element method with application to interface problems. Master’s thesis, National Central University, 2014.
[9] Meng-Zhe Li. Parallel multiscale finite element with adaptive bubble enrichment method. Master’s thesis, National Central University, 2016.
[10] J. Donea and H. Antonio. Finite Element Methods for Flow Problems. 2003.
[11] H. Fu, H. Guo, J. Hou, and J. Zhao. A stabilized mixed finite element method for steady and unsteady reaction–diffusion equations. Comput. Methods Appl. Mech. Eng., 304:102–117, 2016.
[12] A Sendur and A Nesliturk. Bubble-based stabilized finite element methods for time-dependent convection–di usion–reaction problems. Int. J. Numer. Methods Fluids, 82:512–538, 2016.
[13] L. P. Franca, J. V. Ramalho, and F. Valentin. Enriched finite element methods for unsteady reaction–diffusion problems. Int. J. Numer. Methods Biomed. Eng., 22:619–625, 2006.
[14] H. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. 2000.
[15] Y. Saad. Iterative methods for sparse linear systems. 2003.