跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎右強
You-Chiang Li
論文名稱:
Diophantine approximation and the Markoff chain
指導教授: 夏良忠
Liang-Chung Hsia
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 49
中文關鍵詞: 馬可夫鏈
外文關鍵詞: Markoff chain, Diophantine approximation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於實數$xi$我們定義$||xi||$為最接近$xi$整數。我的論文主要是探討$V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ 這個集合。此篇論文裡面有三個重要定理,分別是Dirichlet、Hurwitz和Markoff的定理。由Dirichlet的定理我們可證得 $Vsubset[0,1]$。而由Hurwitz的定理,我們更進一步推得 $Vsubset[0,1/sqrt{5}]$,並且$1/sqrt{5}$ 將不能再更小。Markoff的定理則是一個重要的結果,他清楚的說明了集合$V$在 $(1/3, 1/sqrt{5}]$ 這個區間上分布的情形。


    For raal $xi$, we define $||xi||$ be the nearest integer. We are interested in the set $V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ . Our main theorems are the Dirichlet''s theorem, the Hurwitz''s theorem and the Markoff''s theorem. From Dirichlet’s theorem, we may prove that $Vsubset[0,1]$. And from Hurwitz’s theorem, we may obtain that $Vsubset[0,1/sqrt{5}]$ and $1/sqrt{5}$ cannot be improved. Markoff''s theorem is an important result. He explained how $V$ distributes over the interval $(1/3, 1/sqrt{5}]$

    0.Introduction 1 1.The Theorem of Dirichlet 2 2.Continued Fractions 2 3.Pell’s Equation 16 4.Limit Inferior of q||qξ|| 20 5.The Markoff chain 25 6.The Markoff equation 40 Reference 49

    [1] Cassels, J. W. S. An Introduction to Diophantine Approximation, London
    University Press, 1957.
    [2] Davenport, Harold. The Higher Arithmetic-an introduction to the theory of
    numbers, Cambridge University Press, 1982.
    [3] Ireland, Kenneth F. and Rosen, Michael. extit{A Classical Introduction
    to Modern Number Theory, 2nd edition}, New York Springer-Verlag, 1982.
    [4] Niven, Ivan and Zuckerman, Herbert S. An Introduction to the Theory of
    Numbers, New York Wiley, 1980.
    [5] Nathanson, Melvyn B. Approximation by contunued fractions, American
    Mathematical Society, Vol.45, No.3, 1974, pp.323-324.
    [6] Silverman, Joseph H. The Markoff equation X^ 2+Y^ 2+Z^ 2=aXYZ over
    quadratic imaginary fields, J. Number Theory 35 (1990), no. 1,pp.72-104.

    QR CODE
    :::