跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝岳廷
Yue-ting Xie
論文名稱: 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究
Research of High Aspect Ratio Structure Fabricated by Four-axis Micro-manufacturing System based on Two-photon Photopolymerization Technology
指導教授: 廖昭仰
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 雙光子光致聚合四軸微製造系統高深寬比
外文關鍵詞: Two-photon Polymerization, Four Axis Micro-manufacturing System, High Aspect Ratio
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙光子聚合(Two Photon Polymerization)微製造是一項新穎的技術,其特點為以層層堆疊的方式製作任意且複雜之立體微結構,但由於TPP微製造之最小成形單位─體素為類似於橢圓體的形狀,於一般三軸之系統架構製作微結構時因體素尺寸關係而造成結構失真,對此本研究提出利用四軸系統架構,藉由旋轉樹酯承載台讓體素以不同於傳統三軸架構的堆疊方式進行堆疊。本論文首先以一般傳統三軸的方式,改變雷射功率與曝光時間製作體素點陣列,利用掃描式電子顯微鏡量測體素之縱向與橫向尺寸,建立起本實驗室之資料庫,接著利用四軸系統製作高深寬比陣列,來驗證四軸架構之可行性,經過實驗成果顯示本研究利用四軸微製造系統製作出高深寬比為3.347之結構。


    Two-photon polymerization is a novel microfabrication technology. In this technology, the structure is fabricated layer by layer and it can be made in any three-dimensional complex shape. However, the smallest forming unit in TPP is called voxel. In conventional three-axis micro-manufacturing system the micro-structure is distortion when voxel is vertically stacked layer by layer because the shape of voxel is ellipsoid. Therefore, this research proposed four-axis system instead three-axis one. The glass substrate can be rotated by rotating the 4th axis. So that the voxel can be stacked in different way which is compared with conventional three-axis micro-manufacturing system. This research was established the voxel database in the beginning. By Changing laser power and exposure time, making voxel array by using conventional three-axis micro-manufacturing system, and using the scanning electron microscope to measure the vertical and horizontal voxel size. Thus, the research was used four-axis micro-manufacturing systems to produce high aspect ratio structure array, and verified the feasibility of the four-axis system architecture. The experimental results showed the high aspect ratio structure can be made and the high aspect ratio is about 3.347 by using four-axis micro-manufacturing systems.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1研究背景 1 1-2雙光子微製造演進之文獻回顧 2 1-3雙光子微製造高深寬比結構之文獻回顧 6 1-4研究動機與目的 11 1-5論文架構 12 第二章 理論說明 13 2-1雙光子吸收光致聚合反應 13 2-2體素介紹 15 2-3雙光子微製造技術系統分析與製造流程 18 第三章 研究方法 24 3-1實驗硬體架構與設備介紹 24 3-2樹酯配製 29 3-3 雷射焦點之光強度模擬 31 3-4雷射光功率和曝光時間影響體素尺寸之實驗步驟 33 3-5四軸TPP微製造加工介紹 37 第四章 結果與討論 41 4-1人機介面 41 4-2雷射功率影響體素尺寸之實驗結果 44 4-3曝光時間影響體素尺寸之實驗結果 49 4-4四軸TPP系統製作高深寬比結構之實驗結果 55 第五章 結論與未來展望 63 5-1結論 63 5-2未來展望 63 參考文獻 65

    [1] M. Goeppert-Mayer, “Elementary Processes with Two Quantum Jumps”, Annals of Physics, Vol. 9, No. 2, pp. 273-294, 1931.
    [2] W. Kaiser, and C. G. B. Garrett, “Two-photon Excitation in CaF2:Eu2+”, Physical Review Letters, Vol. 7, No. 6, pp. 229-231, 1961.
    [3] W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy”, Science, Vol. 248, No. 4951, pp. 73-76, 1990.
    [4] S. Maruo, and S. Kawata, “Two-photon-absorbed Near-infrared Photopolymerization for Threedimensional Microfabrication”, Journal of Microelectromechanical systems, Vol. 7, No. 4, pp. 411-415, 1998.
    [5] J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon Photodynamic Therapy”, Journal of Clinical Laser Medicine and Surgery, Vol. 15, No. 5, pp. 201-204, 1997.
    [6] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
    [7] L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-color Initiation and Deactivation of Polymerization”, Science, Vol. 324, pp. 910-913, 2009.
    [8] H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real Three-dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption”, Optics Letters, Vol. 25, pp. 1110-1112, 2000.
    [9] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer Features for Functional Microdevices”, Nature, Vol. 412, pp. 697-698, 2001.
    [10] S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of Microscale Medical Devices by Two-photon Polymerization with Multiple Foci Via a Spatial Light Modulator”, Biomedical Optics Express, Vol. 2, pp. 3167-3178, 2011.
    [11] T. Stichel, B. Hecht, R. Houbertz, and G. Sextl, “Two-photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications”, Journal of Laser Micro/Nanoengineering, Vol. 5, No. 3, pp. 209-212, 2010.
    [12] C. Eschenbaum, D. Großmann, K. Dopf, S. Kettlitz, T. Bocksrocker, S. Valouch, and U. Lemmer, “Hybrid Lithography: Combining UV-exposure and Two Photon Direct Laser Writing”, Optics Express, Vol. 21, pp. 29921-29926, 2013.
    [13] D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High Numerical Aperture Microlens Arrays of Close Packing”, Applied Physics Letters, Vol. 97, NO. 3, pp. 031109, 2010.
    [14] N. Tosa, J. Bosson, M. Pierre, C. Rambaud, M. Bouriau, G. Vitrant, O. Stéphan, S. Astilean, and P. L. Baldeck, “Optical Properties of Metallic Nanostructures Fabricated by Two-photon Induced Photoreduction”, Proceedings of Spie, Vol. 6195, pp. 619501, 2006.
    [15] K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus Two-photon Polymerization Technique Based on Individually Controlled Phase Modulation”, Optics Express, Vol. 18, No. 16, pp. 17193-17200, 2010.
    [16] K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D Two-photon Polymerization Structuring with Widened Objective Working Range (WOW-2PP)”, Science & Applications, Doi:10.1038, Lsa.2013.72, 2013.
    [17] K. Takada, H. B. Sun, and S. Kawata, “Improved Spatial Resolution and Surface Roughness in Photopolymerization-based Laser Nanowriting”, Applied Physics Letters, Vol. 86, 071122, 2005.
    [18] K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D Fabrication of All-polymer Conductive Microstructures by Two Photon Polymerization”, Optics Express, Vol. 21, No. 25, pp. 31029-31035, 2013.
    [19] M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic Microrobots: Fabrication by Two-photon Polymerization and Biocompatibility”, Biomedical Microdevices, Vol. 15, pp. 997-1003, 2013.
    [20] I. B. Divliansky, G. Weaver, M. Petrovich, T. Jabbour, H. P. Seigneur, C. Parnell-Lampen, A. Thompson, K. D. Belfield, and S. M. Kuebler, “CAD-integrated System for Automated Multi-photon Three-dimensional Micro- and Nano-fabrication”, Proceedings of Spie, Vol. 5720, pp. 196-203, 2005.
    [21] C. W. Hull, “Apparatus for Production of Three-dimensional Objects by Stereolithography”, United States Patent, No. 4575330, 1986.
    [22] H. B. Sun, and S. Kawata, “Two-photon Laser Precision Microfabrication and Its Applications to Micro–Nano Devices and Systems”, Journal of Lightwave Technology, Vol. 21, No. 3, pp. 624-633, 2003.
    [23] H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional Focal Spots Related to Two-photon Excitation”, Applied Physics Letters, Vol. 80, No. 20, pp. 3673-3675, 2002.
    [24] S. Wu, J. Serbin, and M. Gu, “Two-photon Polymerization for Three-dimensional Micro-fabrication”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 181, pp. 1-11, 2006.
    [25] C. Wang, L. Taherabadi, G. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the Manufacture of 3D Microbatteries”, Electrochemical and Solid-State Letters, Vol. 7, pp. A435-A438, 2004.
    [26] Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lücke, D. D. Denton, and K. F. Böhringer, “High-aspect Ratio Submicrometer Needles for Intracellular Applications”, Journal of Micromechanics and Microengineering, Vol. 13, No. 4, pp. S91-S95, 2003.
    [27] A. L. Bogdanov, and S. S. Peredkov, “Use of SU-8 Photoresist for Very High Aspect Ratio X-ray Lithography”, Microelectronic Engineering, Vol. 53, pp. 493-496, 2000.
    [28] E. Y. Pan, N. W. Pu, Y. P. Tong, and H. F. Yau, “Fabrication of High-aspect-ratio Sub-diffraction-limit Microstructures by Two-photon-absorption Photopolymerization”, Applied Physics B, Vol. 77, pp.485-488, 2003.
    [29] C. H. Lee, T. W. Chang, K. L. Lee, J. Y. Lin, and J. Wang, “Fabricating High-aspect-ratio Sub-diffraction-limit Structures on Silicon with Two-photon Photopolymerization and Reactive Ion Etching”, Applied Physics A, Vol. 79, pp. 2027-2031, 2004.
    [30] Nanoscribe company, “Dip-in Laser Lithography (DiLL)”, Data Sheet, January 2012.
    [31] Nanoscribe company, “News and Reviews April 2012”, News, April 2012.
    [32] R.W. Boyd, Nonlinear Optic, Second Edition, Academic Press, San Diego, 2003.
    [33] T. W. Lim, S.H. Park, D.-Y. Yang, S. W. Yi, H. J. Kong, K.-S. Lee, “Contour Offset Algorithm (COA) in Nano Replication Printing (nRP) for Fabricating Nano-Precision Features”, Journal of Mechanical Science and Technology, Vol. 19, No. 11 pp.2105-2111, 2005.
    [34] S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi, H. J. Kong, and K. S. Lee, “Direct Nano-patterning Methods using Nonlinear Absorption in Photopolymerization Induced by a Femtosecond Laser”, Journal of Nonlinear Optical Physics & Materials, Vol.14, pp.331-340, 2005.
    [35] H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling Laws of Voxels in Two-photon Photopolymerization Nanofabrication”, Applied Physics Letters, Vol. 83, No. 6, pp. 1104-1106, 2003.
    [36] H. B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental Investigation of Single Voxels for Laser Nanofabrication via Two-photon Photopolymerization”, Applied Physics Letters, Vol. 83, No. 5, pp. 819-821, 2003.
    [37] T. W. Lim, S. H. Park, D. Y. Yang, T. A. Pham, D. H. Lee, D. P. Kim, S. I. Chang, and J. B. Yoon, “Fabrication of Three-dimensional SiC-based Ceramic Micropatterns using a Sequential Micromolding-and-pyrolysis Process”, Microelectronic Engineering, Vol. 83, pp. 2475-2481, 2006.
    [38] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko, and M. Malinauskas, “Direct Laser Writing of 3D Polymer Micro/Nanostructures on Metallic Surfaces”, Applied Surface Science, Vol. 270, pp. 382–387, 2013.
    [39] C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A Rapid Two-photon Fabrication of Tube Array using an Annular Fresnel Lens”, Optics Express, Vol. 22, No. 4, pp. 3983-3990, 2014.
    [40] E. Käpylä, “Direct Laser Writing of Polymer-Ceramic and Hydrogel Microstructures by Two-Photon Polymerization ”, Tampere University of Technology, Doctor Thesis, October 2014.
    [41] M. J. Nasse, and J. C. Woehl, “Realistic Modeling of the Illumination Point Spread Function in Confocal Scanning Optical Microscopy”, Journal of the Optical Society of America A, Vol. 27, pp. 295-302 , 2010.

    QR CODE
    :::