跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張仲浩
Chung-Haw Chang
論文名稱: 超立方體與其變形的覆蓋容器
Spanning Container on Variations of Hypercubes
指導教授: 黃華民
Hua-Min Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 100
中文關鍵詞: 超級延伸連通延伸容器容器摺疊型超立方體加強型超立方體超級延伸可蕾斯化超立方體
外文關鍵詞: spanning container, container, hypercube, super spanning laceability, super spanning connected, enhanced hypercube, folded hypercube
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假設圖形 G 的連接度為κ(G), 當k ≦κ(G) 時, 根據 Menger’s 定理對圖
    形 G 中任意兩個相異點 u 與 v ,均存在 k 條連通u 與 v 的不重複邊與點(除
    了u 與 v 外) 之路徑。一個 k- container C(u,v)是指一個圖形 G 擁有k 條連通 u
    與 v 的不重複邊與點(除了u 與 v 外)之路徑的集合。若圖 G 裏面的每一個點
    都包含在C(u,v)中,我們稱此 k- container 為一個 k*- container C(u,v)。若圖形 G
    中任意相異兩點都存在 k*- container , 我們稱此圖形 G 為k*-連通。若對任何的
    k,1≦ k ≦ κ(G),圖形 G 為 k*-連通, 則我們稱此圖 G 是超級覆蓋連通
    (super spanning connected)。
    然而,當我們研究二分圖G 的 k*-連通時,我們需要做一些修正。一個二分
    圖G 中,任意兩個不同顏色的點 u 與 v 之間若存在一個 k*-container,則我們
    稱其為 k*- laceable。一個k 正則二分圖G ,若對所有的 1≦ k ≦ κ(G) 來說,
    它皆為 k*- laceable ,則我們稱此二分圖G 為超級覆蓋laceable (super spanning
    laceable)。一個 k*- container C(u,v) = { P1, … , Pk },若對所有的
    1 ≦ i, j ≦ k , | |Pi|-|Pj| | ≦ 2 都成立,則我們稱此 k*- container C(u,v)是
    equitable。
    超立方體是最有名的網路圖之ㄧ。 在本論文中,我們將討論超立方體 ,摺
    疊型超立方體 及 加強型超立方體的延伸連通性,超級延伸連通及相關的問題。


    Let G be a graph with connectivity κ(G). It follows from Menger''s Theorem that
    there are k vertex-disjoint paths joining any two distinct vertices when k ≦κ(G).
    A k -container C ( u, v) of a graph G is a set of k vertex-disjoint paths between u and v.
    A k-container is a k*-container if it contains all vertices of G . A graph G is
    k*-connected if there exists a k*-container between any two vertices. A graph G is
    super spanning connected if G is k*-connected for every 1 ≦ k ≦κ(G).
    However, we need some modification as we study bipartite k-connected graphs.
    A bipartite graph G is k*-laceable if there exists a k*-container between any two
    vertices from different partite sets. A bipartite graph G is super spanning laceable if G
    is k*-laceable for 1 ≦ k ≦ κ(G). A k*-container C ( u, v) ={ P1, … , Pk } is
    equitable if | | Pi | - | Pj | | ≦ 2, 1 ≦ i , j ≦ k.
    The hypercube Qn is one of the most popular networks. In this thesis, we will
    discuss that the spanning connectivity, the spanning laceability, and related problems
    of hypercube Qn, folded hypercube FQn, and enhanced hypercube Qn,m.

    Contents Abstract(in Chinese) i Abstract(in English) ii Contents iii List of Figures v 1 Introduction 1 1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . 1 1.2 Undiected Cayley graphs . . . . . . . . . . . . . . . . . . 3 2 Container and connectivity 11 2.1 Container 11 2.2 Container in ypercubes . . . . . . . . . . . . . . . . . . . 12 2.3 Container in folded hypercubes . . . . . . . . . . . . . . . . . 16 2.4 Container in enhanced hypercubes . . . . . . . . . . . . . . . . 18 3 The spanning container and spanning connectivity 22 3.1 The spanning container . . . . . . . . . . . . . . . . . . . 22 3.2 The super spanning property of hypercubes . . . . . . . . . . . 25 3.3 The spanning connectivity of folded hypercubes . . . . . . . . . 35 3.3.1 k^*-fan spanning property of hypercubes. . . . . . . . . 35 3.3.2 Construction of (n + 1) ^*-containers . . . . . . . . . 46 3.4 The spanning connectivity of enhanced hypercubes . . . . . . . . 53 3.4.1 The super spanning properties of enhanced hypercubes . . . . . 54 3.4.2 Construction of (n + 1)^*-containers . . . . . . . . . . . .. 62 4 Equitable spanning laceability of hypercubes 71 4.1 Preliminaries and known results . .. .. .. . 71 4.2 Extended k-parallel spanning property of hypercubes . . . . . . 73 4.3 Equitable laceability of hypercubes. . . . . . . . . 87 5 Discussion and conclusion 93 Bibliography 94

    [1] M. Albert, R. E. L. Aldred, D. Holton, and J. Sheehan, On 3∗-connected graphs,
    Australasian Journal of Combinatorics, 24 (2001), 193-208.
    [2] S. Abraham and K. Padmanabhan, Performance of the direct binary n-cube network
    for multiprocessors, IEEE Transactions on Computers, 38 (1989), 1000-1011.
    [3] S. B. Akers, B. Krishnamurthy, and D. Harel, The star graph: an attractive alter-
    native to the n-cube, Proceedings of International Conference on Parallel Processing,
    (1986), 216-223.
    [4] S. B. Akers, and B. Krishnamurthy, A group-theoretic model for symmetric intercon-
    nection networks, IEEE Transactions on Computers, 38 (1989), 555-566.
    [5] W. C. Athas and C. L. Seitz, Multicomputers: message-passing concurrent comput-
    ers, IEEE Computer. Mag., 21(1988), 9-24.
    [6] L. N. Bhuyan and D. P. Agrawal, Generalized hypercube and hyperbus structures
    for a computer network, IEEE Transactions on Computers, 33 (1984), 323-333.
    [7] J. A. Bondy and U. S. R. Murty, Graph theory with applications, North Holland,
    New York, 1980.
    [8] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, Lee distance and topological properties of
    k-ary n-cubes, IEEE Transactions on Computers, 44 (1995), 1021-1030.
    [9] F. Cao, D. Z. Du, D. Frank Hsu, and S. H. Teng, Fault tolerance properties of
    pyramid networks, IEEE Transactions on Computers, 48 (1999), 88-93.
    [10] C. P. Chang, J. N. Wang, and L. H. Hsu, Topogical properties of twisted cube,
    Information Sciences, 113 (1999), 147-167.
    [11] C. H. Chang, C. K. Lin, H. M. Huang, and L. H. Hsu, The super laceability of the
    hypercubes, Information Processing Letters, 92 (2004), 15-21.
    [12] M. Y. Chan and S. J. Lee, On the existence of hamiltonian circuits in faulty hyper-
    cubes, SIAM J. Discrete Mathematics, 4 (1991), 511-527.
    [13] C. C. Chen, J. Chen, Optimal parallel Routing in star networks, IEEE Transactions
    on Computers, 46 (1997), 1293-1303.
    [14] Y. C. Chen, C. H. Tsai, L. H. Hsu, and Jimmy J. M. Tan On some super fault-
    tolerant hamiltonian graphs, Computers and Mathematics with Applications, 148
    (2004), 729-741.
    [15] S. A. Choudum, and R. U. Nandini, Complete binary trees in folded and enhanced
    hypercubes, Networks, vol.43(4) (2004), 266-272.
    [16] I. Chung, Construction of a parallel and shortest routing algorithm on recursive cir-
    culant networks, Proceedings of the Fourth International Conference/Exhibition on
    High Performance computing in the Asia-Pacific Region, 2(2000), 580-585.
    [17] K. Day and A. Tripathi, Characterization of node disjoint paths in arrangement
    graphs, Technical Report TR 91-43 Computer Science Department, University of
    Minnesota, 1991.
    [18] K. Day and A. Tripathi, Arrangement graphs: a class of generalized star graphs,
    Information Processing Letters, 42 (1992), 235-241.
    [19] K. Day and A. Tripathi, A comparative study of topological properties of hypercubes
    and star graphs, IEEE Transactions on Parallel and Distributed Systems, 5 (1994),
    31-38.
    [20] K. Day and A. Ayyoub, Fault diameter of k-ary n-cube networks , IEEE Transactions
    on Parrallel and Distributed Systems, 8 (1997), 903-907.
    [21] M. Dietsfelbinger, S. Madhavapeddy, and I. H. Sudborough, Three disjoint path
    paradigms and star networks, Proceedings of the third IEEE Symposium on Parrallel
    and Distributed Processing, (1991), 400-406.
    [22] D. R. Duh and G. H. Chen, Topological properties of WK-recursive networks, Journal
    of Parallel and Distributed Computing, 23 (1994), 468-474.
    [23] D. R. Duh, G. H. Chen and J. F. Fang, Algorithm and properties of a new two-level
    network with folded hypercubes as basic modules, IEEE Transaction on Parallel and
    Distributed Systems, 6 (1995), 714-723.
    [24] D. R. Duh, G. H. Chen and D. Frank. Hsu, Combinatorial properties of generalized
    hypercube graphs, Information Processing Letters, 57 (1996), 41-45.
    [25] A. E. Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE
    Transaction on Parallel and Distributed Systems, 2 (1991), 31-42.
    [26] A. H. Estafahanian and S. L. Hakimi, Fault-tolerant routing in de Bruijn communi-
    cation networks, IEEE Transactions on Computers, 34 (1985), 777-788.
    [27] A. H. Estafahanian and L. M. Ni and B. E. Sagan, The twisted N-cube with application
    to multiprocessing, IEEE Transactions on Computers, 40 (1991), 88-93.
    [28] E. Oh and J. Chen, Parrallel routing in hypercube networks with faulty nodes, IEEE
    , (2001), 338-345.
    [29] J. S. Fu, G. H. Chen, and D. R. Duh, Node-disjoint paths and related problems on
    hierarchical cubic networks, Netwoks, vol. 40(3) (2002), 142-154.
    [30] S. Gao, and D. F. Hsu, Short containers in Cayley graphs, DIMACS Technical Report
    2001-18, 2001.
    [31] T. F. Gonzalez and D. Serena, n-Cube network: node disjoint shortest paths for
    maximal distance pair of vertices, Parallel Computing, 30 (2004), 973-998.
    [32] Q. P. Gu and S. Peng, Algorithms for node disjoint paths in incomplete star net-
    works, Proceedings of International Conference on Parrallel and Distributed Systems,
    (1994), 296-303.
    [33] Q. P. Gu and S. Peng, Node-to-node cluster fault tolerent routing in star graphs,
    Information Processing Letters, 56 (1995), 29-35.
    [34] F. Harary, Graph theory, Reading, MA: Addison-wesley, 1972.
    [35] F. Harary and M. Lewinter, Hypercubes and other recursively defined hamilton lace-
    able graphs, Congressus Numerantium 60 (1987), 81-84.
    [36] F. Harary and M. Lewinter, The starlike trees which span a hypercube, Computers
    and Mathematics with Applications, 15 (1988), 299-302.
    [37] S. Y. Hsieh, G. H. Chen, and C. W. Ho, Hamiltonian-laceability of star graphs,
    Networks 36 (2000), 225–232.
    [38] D. F. Hsu, Interconnection networks and algorithms, Networks, Special issue, 1993.
    [39] D. F. Hsu, On container width and length in graphs, groups and networks, IEICE
    Transaction on Fundamentals of Electronics, Communications and Computer Science
    , E77-A (1994), 668-680.
    [40] J. Kim and K. G. Shin, Operationlly enhanced folded hypercube, IEEE Transaction
    on Parallel and Distributed systems, 5 (1994), 1310-1316.
    [41] M. Kobeissi, M. Mollard, Disjoint cycles and spanning graphs of hypercubes, Discrete
    Mathematics, 288 (2004), 73-87.
    [42] S. Lakshmivarahan, and S. K. Dhall, Ring, torus, and hypercube Architec-
    tures/algorithms for parallel computing, Parallel Computing, 25 (1999), 1877-1906.
    [43] A. E. Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE
    Transactions on Parrael and Distributed Systems, 2(3) (1991), 31-42.
    [44] S. Latifi, S. Q. Zheng, and N. Bagherzadeh, Optimal ring embedding in hypercubes
    with faulty links, Proceedings of the IEEE Symposium on Fault-Tolerant Computing,
    42 (1992), 178-184.
    [45] S. Latifi, Combinatorial analysis of the fault-diameter of the n-cube, IEEE Transactions
    on Computers, 42 (1993), 27-33.
    [46] S. Latifi, On the fault diameter of the star graphs, Information Processing Letters,
    46 (1993), 143-150.
    [47] C. N. Lai, G. H. Chen, and D. R. Duh, Constructing one-to-many disjoint paths in
    folded hypercubes, IEEE Transactions on Computers, 51 (2002), 33-45.
    [48] S. C. Liaw, G. J. Chang, F. Cao, and D. F. Hsu, Fault-tolerant routing in circulant
    networks and cycle prefix networks, Annals of Combinatorics, 2 (1998), 165-172.
    [49] F. T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees,
    hypercubes, San Mateo, Calif.: Morgan Kaufmann, 1992.
    [50] M. Lewinter and W. Widulski, Hyper-hamilton laceable and caterpillar-spannable
    product graphs, Computers and Mathematics with Applications, 34 (11) (1997), 99–
    104.
    [51] Q. Li, D. Sotteau, and J. Xu, 2-diameter of de Bruijn graphs, Networks, 28 (1996),
    7-14.
    [52] C. K. Lin, H. M. Huang, and L. H. Hsu, The super connectivity of the pancake graphs
    and the super laceability of the star graphs, Theoretical Computer Science, 339 (2005),
    257-271.
    [53] S. Madhavapeddy and I. H. Sudborough, A topological property of hypercube: node
    disjoint paths, Proceedings of the Second IEEE Symposium on Parrallel and Distributed
    Processing, (1990), 532-539.
    [54] K. Menger, Zur allgemeinen kurventheorie, Fundamentable Mathematik, 10 (1927),
    95-115.
    [55] F. J. Meyer and D. K. Ptadhan, Flip-trees: fault-tolerant graphs with wide containers,
    IEEE Transactions on Computers, 37 (1988), 472-478.
    [56] S. Ohring and S. K. Das, Folded petersen cube networks: new competitors for the
    hypercubes, IEEE Transactions on Parrael and Distributed Systems, 7 (1996), 151-
    168.
    [57] O. Ore, Hamiltonian Connected Graph, Journal des Mathematiques Pures et Appliques,
    42 (1963), 121-27.
    [58] C. D. Park, and K. Y. Chwa, Hamiltonian properties on the class of hypercube-like
    networks, Information Processing Letters, 91 (2004), 11-17.
    [59] Y. Rouskov and P. Srimani, Fault diameter of star graphs, Information Processing
    Letters, 48 (1993), 243-251.
    [60] Y. Saad and M. H. Schultz, Topological properties of hypercubes, IEEE Transactions
    on Computers, 37 (1988), 867-872.
    [61] G. Simmons, Almost all n-dimensional rectangular lattices are hamilton laceable,
    Congressus Numerantium 21 (1978), 649-661.
    [62] C. M. Sun, H. M. Hung and L. H. Hsu, Mutually indepedent hamiltonian paths and
    cyales in hypercubes, accepted by Journal of Interconnection Networks.
    [63] C. H. Tsai, Jimmy J.M.Tan, T. Liang, and L. H. Hsu, Fault-tolerant hamiltonian
    laceability of hypercubes, Information Processing Letters, 83 (2002), 301-306.
    [64] C. H. Tsai, Jimmy J.M.Tan, and L. H. Hsu, The super-connected property of recursive
    circulant graphs, Information Processing Letters, 91 (2004), 293-298.
    [65] N. F. Tzeng and S. Wei, Enhanced hypercubes, IEEE Transactions on Computers, 40
    (1991), 284-294.
    [66] A. S. Vaidya, P. S. N. Rao, and S. R. Shankar A class of hypercube-like networks, in:
    Pro. of the 5th Symp. On Parallel and Distributed Processing, IEEE Comput. Soc.,
    Los alamitos, CA, December, pp. 800–803, 1993.
    [67] D. Wang, Diagnosability of hypercubes and enhanced hypercubes under the comprison
    diagnosis model, IEEE Transactions on Computers, 48 (1999), 1369-1374.
    [68] D.Wang, Embedding hamiltonian cycles into folded hypercubes with faulty links, Journal
    of Parallel and Distributed Computing, 61 (2001), 545-564.
    [69] C. S. Yang, J. F. Wang, J. Y. Lee, and F. T. Boesch, Graph theoretic analysis for
    the boolean n-cube networks, IEEE Transactions on Circuits and Systems, 35 (1988),
    1175-1179.

    QR CODE
    :::