跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳文瑜
Wen-Yu Chen
論文名稱: TCDP井下地震儀14年長期監測 – 噪訊與地震
Long-term Monitoring of TCDP Borehole Seismometer Array for 14 years – Noises and Earthquakes
指導教授: 林彥宇
Yen-Yu Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 282
中文關鍵詞: 台灣車籠埔鑽井整合型計畫井下地震儀功率譜密度功率譜密度之機率密度函數
外文關鍵詞: TCDP, Borehole seismometer, Power spectral density, Probabilistic power spectral density
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣車籠埔鑽探計畫井下地震儀(Taiwan Chelungpu-fault Drilling Project Borehole Seismometers Array,簡稱TCDPBHS)安裝於1999年Mw 7.6集集地震最大同震變形(12m)之車籠埔斷層北段,運作時間為2006年中至2021年底約16年。井下地震儀所記錄之高品質地震波形,已有許多前人研究對於此研究區域產生之微地震及斷層帶特性進行深入的分析與探討。本研究分析TCDPBHS 2006年至2019年共14年間,長時間之連續波形紀錄的變化,用以瞭解測站的觀測數據品質在長時間的運行下有無顯著改變,分析之頻段範圍為0.01至1秒。首先,本研究優化轉檔程式,提高轉檔效率,並統整了TCDPBHS之長年維護紀錄,做出TCDPBHS之資料完整度圖,算得其資料完整率為84.23%。其次,本研究分析此14年間TCDPBHS連續波形資料,計算其功率譜密度之機率密度函數(Probabilistic Power Spectral Density,簡稱PPSD),並建立PPSD資料庫。再者,本研究分析PPSD的長期變化,發現儀器自安裝以來,其記錄之長期環境噪訊並無顯著變化,數值維持在 -150 dB至 -120 dB之間,顯示儀器運行至2019年仍運作良好。最後,本研究藉由不同方式分析PPSD資料特性,發現TCDPBHS能夠觀察到明顯的日夜變化、週變化、降雨及塊體崩塌事件,但在從環境噪訊來分辨微地震訊號上遇到挑戰。本研究確定了TCDPBHS於2006年至2019年間的資料品質穩定性及分析各種雜訊型態,這些結果將對TCDPBHS的未來研究提供基礎資訊,且此資料分析流程可直接應用於米崙斷層井下地震儀陣列。


    The Taiwan Chelungpu-fault Drilling Project Borehole Seismometers (TCDPBHS) were installed between 947 m and 1274 m depth in an active thrust fault environment, which caused the Mw 7.6 Chi-Chi earthquake in Taiwan in 1999. The running time of TCDPBHS starts from the middle of 2006 to the end of 2021. In this paper, we analyze 14 years of continuous noise records of TCDPBHS from 2006 to 2019 between the period ranging from 0.01 and 1 second. First, we optimize the file conversion procedure of TCDPBHS to increase efficiency. We also combine the maintenance records and the existing files to get the data completeness, which is 84.23%. Second, we calculate the power spectral density (PSD) of each 10-minute record, then we calculate the probabilistic power spectral density (PPSD) of each month from 2006 to 2019. We find that there was no significant change between the PPSD distribution, which is between -150 dB and -120 dB, during these years. It indicates that TCDPBHS are well-operated. We establish a PPSD database for future studies based on our results. Last, we further investigate characteristics of PPSD in TCDPBHS and obtain diurnal and weekly variation of TCDPBHS due to human activities. We also discover that heavy rainfalls and landslides may increase noise level in TCDPBHS. We cannot identify microearthquake events from the ambient noise. This study helps us understand the stability of TCDPBHS from 2006 to 2019 as well as the different types of noise characteristics. The documented information will be useful for further studies of TCDPBHS. The data analysis process can be directly applied to the borehole seismometer array near Milun fault.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 1 1-3 本文介紹 3 第二章 井下地震儀資料 11 2-1 井下地震儀簡介 11 2-2 資料處理 11 2-3 資料統整與完整度 14 第三章 TCDPBHS噪訊觀測與結果 24 3-1 Probabilistic Power Spectral Density(PPSD)方法 24 3-1-1 計算Power Spectral Density(PSD) 24 3-1-2計算PPSD 25 3-2 建立資料庫 26 3-3 PSD與PPSD結果 26 第四章 噪訊分析與討論 32 4-1 PPSD七地震儀長期分析 32 4-2 季節和週變化 33 4-3 日夜變化 34 4-4 降雨變化 34 4-5 塊體崩塌訊號 36 4-6 特殊行為(BHS6) 36 4-7 尋找微地震門檻值 36 第五章 結論 54 參考文獻 55 附錄A 轉檔程式碼 58 附錄B TCDPBHS維護紀錄 67 附錄C PPSD程式碼(MATLAB) 72 附錄D TCDPBHS之垂直分量的PPSD圖 78

    Agius, M. R., D'Amico, S., Galea, P., & Panzera, F. (2014). Performance evaluation of Wied Dalam (WDD) seismic station in Malta.
    https://www.um.edu.mt/library/oar/handle/123456789/2041
    Belli, G., Walter, F., McArdell, B., Gheri, D., & Marchetti, E. (2022). Infrasonic and Seismic Analysis of Debris‐Flow Events at Illgraben (Switzerland): Relating Signal Features to Flow Parameters and to the Seismo‐Acoustic Source Mechanism. Journal of Geophysical Research: Earth Surface, 127(6), e2021JF006576.
    Chen, J.-T., Xie, J.-B., Lyu, Z.-H., & Liao, Y.-F. (2019). Calculation and Analysis of Environment Ground Noise Based on the PPSD Method for Yangjiang Guangdong Small Aperture Borehole Seismic Array. North China Earthquake Sciences, 37(2), 21-29. https://doi.org/10.3969/j.issn.1003-1375.2019.02.004
    Chmiel, M., Walter, F., Wenner, M., Zhang, Z., McArdell, B. W., & Hibert, C. (2021). Machine learning improves debris flow warning. Geophysical Research Letters, 48(3), e2020GL090874.
    Coviello, V., Arattano, M., Comiti, F., Macconi, P., & Marchi, L. (2019). Seismic characterization of debris flows: insights into energy radiation and implications for warning. Journal of Geophysical Research: Earth Surface, 124(6), 1440-1463.
    Custódio, S., Dias, N. A., Caldeira, B., Carrilho, F., Carvalho, S., Corela, C., Díaz, J., Narciso, J., Madureira, G., & Matias, L. (2014). Ambient noise recorded by a dense broadband seismic deployment in western Iberia. Bulletin of the seismological society of America, 104(6), 2985-3007.
    Díaz, J., Ruíz, M., Crescentini, L., Amoruso, A., & Gallart, J. (2014). Seismic monitoring of an Alpine mountain river. Journal of Geophysical Research: Solid Earth, 119(4), 3276-3289.
    Hillers, G., Campillo, M., Lin, Y. Y., Ma, K. F., & Roux, P. (2012). Anatomy of the high‐frequency ambient seismic wave field at the TCDP borehole. Journal of Geophysical Research: Solid Earth, 117(B6).
    Hung, J.-H., Yun-Hao, W., Yeh, E.-C., Jong-Chang, W., & Party, T. S. (2007). Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault Drilling Project. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 271.
    Hung, R.-J., Ma, K.-F., Song, T.-R. A., Lin, Y.-Y., & Weingarten, M. (2022). Observation of Temporal Variations in Seismic Anisotropy Within an Active Fault-Zone Revealed From the Taiwan Chelungpu-Fault Drilling Project Borehole Seismic Array. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023050.
    https://doi.org/10.1029/2021JB023050
    Ji, C., Helmberger, D. V., Alex Song, T. R., Ma, K. F., & Wald, D. J. (2001). Slip distribution and tectonic implication of the 1999 Chi‐Chi, Taiwan, earthquake. Geophysical Research Letters, 28(23), 4379-4382.
    Łacny, Ł., Ścisło, Ł., & Guinchard, M. (2020). Application of probabilistic power spectral density technique to monitoring the long-term vibrational behaviour of CERN seismic network stations. Vibrations in Physical Systems, 31(3).
    Lin, Y.-Y., Ma, K.-F., & Oye, V. (2012). Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophysical Journal International, 190(1), 665-676.
    Lin, Y.-Y., Ma, K.-F., Kanamori, H., Song, T.-R. A., Lapusta, N., & Tsai, V. C. (2016). Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array. Geophysical Journal International, 206(2), 757-773.
    https://doi.org/10.1093/gji/ggw172
    Lin, Y. Y., Chen, D. Y., Kuo, C. H., Lin, C. J., Chen, W. Y., & Wen, Y. Y. (2022). Orientation Corrections of a Borehole Seismometer Network in Taiwan Using Teleseismic Earthquakes. Seismological Research Letters, 93(3), 1532-1548.
    https://doi.org/10.1785/0220210248
    Ma, K.-F., Lin, Y.-Y., Lee, S.-J., Mori, J., & Brodsky, E. E. (2012). Isotropic Events Observed with a Borehole Array in the Chelungpu Fault Zone, Taiwan. Science, 337(6093), 459-463. https://doi.org/10.1126/science.1222119
    Marchetti, E., Walter, F., Barfucci, G., Genco, R., Wenner, M., Ripepe, M., McArdell, B., & Price, C. (2019). Infrasound array analysis of debris flow activity and implication for early warning. Journal of Geophysical Research: Earth Surface, 124(2), 567-587.
    McNamara, D. E., & Buland, R. P. (2004). Ambient noise levels in the continental United States. Bulletin of the seismological society of America, 94(4), 1517-1527.
    Peterson, J. R. (1993). Observations and modeling of seismic background noise (No. 93-322). US Geological Survey.
    Sánchez‐Pastor, P., Obermann, A., Schimmel, M., Weemstra, C., Verdel, A., & Jousset, P. (2019). Short‐and long‐term variations in the Reykjanes geothermal reservoir from seismic noise interferometry. Geophysical Research Letters, 46(11), 5788-5798.
    Wang, Y.-J., Lin, Y.-Y., Lee, M.-C., & Ma, K.-F. (2012). Fault zone Q values derived from Taiwan Chelungpu Fault borehole seismometers (TCDPBHS). Tectonophysics, 578, 76-86.
    Xie, J. T., Lin, L. P., Chen, L., & Zhao, M. (2018). The program of probability density function of power spectral density curves from seismic noise of a station based on Matlab. Seismological and Geomagnetic Observation and Research, 39(2), 84-89.
    https://doi.org/10.3969/j.issn.1003-3246.2018.02.012.
    林彥宇,2014年。TCDP 井下地震儀—微地震之觀測與震源特性分析。國立中央大學,博士論文。
    土石流防災資訊網重大災害事件:https://246.swcb.gov.tw/Achievement/MajorDisasters
    中央氣象局觀測資料查詢網:https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
    中央氣象局地震活動彙整:https://scweb.cwb.gov.tw/zh-tw/earthquake/data
    程式mseed2sac:https://ds.iris.edu/ds/nodes/dmc/software/downloads/mseed2sac

    QR CODE
    :::