| 研究生: |
鍾兆林 Chao-Lin Chung |
|---|---|
| 論文名稱: |
氫氧化鎳於鉑(111)電極上的結構及產氫活性研究 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 電化學 、氫析出反應 、電催化劑 、掃描式穿隧電子顯微鏡 |
| 外文關鍵詞: | Electrochemistry, Hydrogen Evolution Reaction, Electrocatalyst, scanning tunneling microscopy |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用循環伏安法(Cyclic Voltammetry,CV)和掃描式穿隧電子顯微鏡(Scanning Tunneling Microscope,STM)探討鎳薄膜於不同鹼性介質中的氫析出反應(HER)催化活性,在鹼性介質中開發高效且具成本效益的HER電催化劑,對於推動永續氫氣生產至關重要。儘管白金(Pt)仍是 HER 的標竿催化劑,但其在鹼性環境中的表現受限,主要因水分子解離動力學遲緩所致。透過修飾白金表面,特別是引入 3d 過渡金屬如鎳(Ni),有望創造雙功能活性位點以提升催化活性。本研究系統性地探討了鎳覆蓋量對Pt(111)電極在鹼性條件下 HER 活性的影響。我們結合電化學測量與 STM 技術,分析了不同鎳覆蓋量的 Pt 電極樣品 (樣品 A、B 和 C)。其中,鎳覆蓋量為 1.53 單層(Monolayer; ML) 的樣品 B 展現最高 HER 活性,在僅需 -0.98 V 過電位的情況下即可達到 10 mA/cm² 的電流密度;相較之下,樣品 A (0.62 ML) 與樣品 C (3.95 ML)則分別需 -1.11 V 與 -1.15 V 的過電位。高解像 STM 影像顯示,在 HER 相關電位下,催化反應的活性相為金屬態 Ni,而非 Ni(OH)₂,這一結論來自於影像中觀察到的 moiré pattern,其為金屬 Ni 的特徵,並明顯區別於 Ni(OH)₂ 的結構。這些結果指出,鎳的化學狀態與覆蓋程度對 HER 活性具有關鍵影響。樣品 B 的催化表現已可媲美先前報導的 Pt/Ni 合金系統,顯示界面結構的精細調控在提升鹼性 HER 活性中扮演重要角色。第二部分探討不同陽離子對於HER催化活性的影響,Ni 修飾的 Pt(111) 電極在鹼性介質中進行HER時,其催化表現受到鹼金屬陽離子性質的顯著影響。本研究比較了在 0.1 M NaOH 與LiOH中催化劑的表面結構與電化學行為,藉由 STM 與 HER 活性測量進行分析。Li⁺ 具備較高的水合能與強電場,對於表面結構影響小,整齊結構與白金所提供的活性位點,進而使 HER 動力學略有改善(Tafel 斜率為 72 mV/dec)。相比之下,Na⁺ 的水合能力較弱,導致表面結構較為無序,水分解效率較低,反映於較高的 Tafel 斜率(87 mV/dec),值得注意的是,我們的結果顯Na⁺在高覆蓋度的鎳中由於水合鈉離子的吸附,形成較大的原子間距,這種獨特結構是過往文獻中沒有報導過的。本研究強調了鹼金屬陽離子在調變催化表面結構與活性方面的細緻作用機制,對於未來在鹼性產氫活性研究有良好的前景。
Developing efficient and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) in alkaline media is essential for advancing sustainable hydrogen production. While platinum remains the benchmark catalyst for HER, its performance under alkaline conditions is limited due to sluggish water dissociation kinetics. Modifying Pt surfaces with 3d transition metals like nickel offers a promising route to enhance activity by creating bifunctional active sites. In this study, we systematically investigated the effect of nickel (Ni) loading on the HER activity of Pt(111) electrodes in alkaline media. Using a combination of electrochemical measurements and in situ scanning tunneling microscopy (STM), we examined Ni-modified Pt electrodes with varying Ni coverages (sample A, B, and C). Sample B, with 1.53 monolayers (ML) of Ni, exhibited the highest HER activity, requiring only -0.98 V overpotential to reach 10 mA/cm², compared to -1.05 V and -1.15 V for samples A (0.62 ML) and C (3.95 ML), respectively. High-resolution STM revealed that the active phase under HER-relevant potentials is metallic Ni, not Ni(OH)₂, as evidenced by moiré patterns characteristic of metallic Ni and distinct from those of Ni(OH)₂. These findings indicate that both the chemical state and coverage of the Ni modifier critically influence HER activity. The performance of Sample B rivals that of previously reported Pt/Ni alloy systems, highlighting the role of finely tuned interfacial structures in enhancing alkaline HER catalysis. The second part investigates the influence of different alkali metal cations on HER catalytic activity. During the hydrogen evolution reaction (HER) in alkaline media, the performance of Ni-modified Pt(111) electrodes is significantly affected by the nature of the alkali cations. This study compares the surface structures and electrochemical behaviors of the catalyst in 0.1 M NaOH and LiOH solutions using STM imaging and HER activity measurements. Li⁺, with its higher hydration energy and stronger electric field, has minimal impact on the surface structure, allowing for the retention of an ordered morphology and effective exposure of platinum active sites, which slightly enhances HER kinetics (Tafel slope: 72 mV/dec). In contrast, Na⁺, with its weaker hydration ability, leads to a more disordered surface and reduced water dissociation efficiency, reflected by a higher Tafel slope (87 mV/dec). Notably, our results reveal that in Ni-rich surfaces, the adsorption of hydrated Na⁺ induces a significant increase in interatomic spacing—a unique structural feature not previously reported in the literature. This study highlights the nuanced role of alkali cations in modulating catalytic surface structures and activity, offering promising insights for the future design of efficient HER systems in alkaline environments.
1. Ponce, F. A.; Bour, D. P., Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997, 386 (6623), 351-359.
2. Allongue, P.; Maroun, F., Electrodeposited magnetic layers in the ultrathin limit. MRS Bulletin 2010, 35 (10), 761-770.
3. Venables, J. A.; Spiller, G. D. T.; Hanbucken, M., Nucleation and growth of thin films. Reports on Progress in Physics 1984, 47 (4), 399.
4. Matthews, J. W.; Blakeslee, A. E., Defects in epitaxial multilayers: I. Misfit dislocations. Journal of Crystal Growth 1974, 27, 118-125.
5. Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science 2013, 6 (5), 1509-1512.
6. Lakhan, M. N.; Hanan, A.; Wang, Y.; Lee, H. K.; Arandiyan, H., Integrated MXene and metal oxide electrocatalysts for the oxygen evolution reaction: synthesis, mechanisms, and advances. Chemical Science 2024, 15 (38), 15540-15564.
7. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society 2005, 152 (3), J23.
8. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science 2011, 334 (6060), 1256-1260.
9. Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J., Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A 2019, 7 (25), 14971-15005.
10. Hagendorf, C.; Shantyr, R.; Neddermeyer, H.; Widdra, W., Pressure-dependent Ni–O phase transitions and Ni oxide formation on Pt(111): An in situ STM study at elevated temperatures. Physical Chemistry Chemical Physics 2006, 8 (13), 1575-1583.
11. Yu, X.; Zhao, J.; Zheng, L.-R.; Tong, Y.; Zhang, M.; Xu, G.; Li, C.; Ma, J.; Shi, G., Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum? ACS Energy Letters 2018, 3 (1), 237-244.
12. Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y., Surface-Engineered PtNi-O Nanostructure with Record-High Performance for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (29), 9046-9050.
13. Huo, L.; Jin, C.; Tang, J.; Xu, X.; Jiang, K.; Shang, L.; Li, Y.; Zhang, J.; Zhu, L.; Chu, J.; Hu, Z., Ultrathin NiPt Single-Atom Alloy for Synergistically Accelerating Alkaline Hydrogen Evolution. ACS Applied Energy Materials 2022, 5 (12), 15136-15145.
14. Cao, Z.; Chen, Q.; Zhang, J.; Li, H.; Jiang, Y.; Shen, S.; Fu, G.; Lu, B.-a.; Xie, Z.; Zheng, L., Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nature Communications 2017, 8 (1), 15131.
15. Veettil, V. T.; Shanmugasundaram, M.; Zitoun, D., Organometallic synthesis of a high-density Pt single atom catalyst on nickel for the alkaline hydrogen evolution reaction. Energy Advances 2024, 3 (12), 2896-2902.
16. Ando, S.; Suzuki, T.; Itaya, K., Layer-by-layer anodic dissolution of sulfur-modified ni(100) electrodes: in situ scanning tunneling microscopy. Journal of Electroanalytical Chemistry 1996, 412 (1), 139-146.
17. Chen, W.; Yen, P.; Kuo, Y.; Chen, S.; Yau, S., Epitaxial Electrodeposition of Nickel on Pt(111) Electrode. The Journal of Physical Chemistry C 2012, 116 (40), 21343-21349.
18. Müller, P.; Ando, S.; Yamada, T.; Itaya, K., Formation of an ordered structure of iodine adsorbed on Ni(111) and the anodic dissolution processes: in-situ STM study. Journal of Electroanalytical Chemistry 1999, 467 (1), 282-290.
19. Sarabia, F. J.; Climent, V.; Feliu, J. M., Underpotential deposition of Nickel on platinum single crystal electrodes. Journal of Electroanalytical Chemistry 2018, 819, 391-400.
20. Kumeda, T.; Kondo, K.; Tanaka, S.; Sakata, O.; Hoshi, N.; Nakamura, M., Surface Extraction Process During Initial Oxidation of Pt(111): Effect of Hydrophilic/Hydrophobic Cations in Alkaline Media. Journal of the American Chemical Society 2024, 146 (15), 10312-10320.
21. García, G.; Koper, M. T. M., Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution. Physical Chemistry Chemical Physics 2008, 10 (25), 3802-3811.
22. Trafela, Š.; Zavašnik, J.; Šturm, S.; Žužek Rožman, K., Controllable voltammetric formation of a structurally disordered NiOOH/Ni(OH)2 redox pair on Ni-nanowire electrodes for enhanced electrocatalytic formaldehyde oxidation. Electrochimica Acta 2020, 362, 137180.
23. Shangguan, E.; Tang, H.; Chang, Z.; Yuan, X.-Z.; Wang, H., Effects of different Ni(OH)2 precursors on the structure and electrochemical properties of NiOOH. International Journal of Hydrogen Energy 2011, 36 (16), 10057-10064.
24. Tkalych, A. J.; Yu, K.; Carter, E. A., Structural and Electronic Features of β-Ni(OH)2 and β-NiOOH from First Principles. The Journal of Physical Chemistry C 2015, 119 (43), 24315-24322.
25. Luo, F.; Liu, B.; Zheng, J.; Chu, G.; Zhong, K.; Li, H.; Huang, X.; Chen, L., Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. Journal of The Electrochemical Society 2015, 162 (14), A2509.
26. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chemistry 2013, 5 (4), 300-306.
27. Kunze, J.; Maurice, V.; Klein, L. H.; Strehblow, H.-H.; Marcus, P., In situ STM study of the anodic oxidation of Cu(001) in 0.1 M NaOH. Journal of Electroanalytical Chemistry 2003, 554-555, 113-125.
28. Maurice, V.; Strehblow, H. H.; Marcus, P., In situ STM study of the initial stages of oxidation of Cu(111) in aqueous solution. Surface Science 2000, 458 (1), 185-194.
29. Merte, L. R.; Grabow, L. C.; Peng, G.; Knudsen, J.; Zeuthen, H.; Kudernatsch, W.; Porsgaard, S.; Lægsgaard, E.; Mavrikakis, M.; Besenbacher, F., Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111). The Journal of Physical Chemistry C 2011, 115 (5), 2089-2099.
30. Day, C. S.; Martin, R., Comproportionation and disproportionation in nickel and copper complexes. Chemical Society Reviews 2023, 52 (19), 6601-6616.
31. Beattie, D. D.; Lascoumettes, G.; Kennepohl, P.; Love, J. A.; Schafer, L. L., Disproportionation Reactions of an Organometallic Ni(I) Amidate Complex: Scope and Mechanistic Investigations. Organometallics 2018, 37 (9), 1392-1399.
32. Lyu, C.; Loh, A.; Jones, M.; Trudgeon, D.; Corbin, J.; Cao, J.; Zhang, Z.; Connor, P.; Li, X., Electrodeposition and Optimisation of Amorphous NixSy Catalyst for Hydrogen Evolution Reaction in Alkaline Environment. Chemistry – A European Journal 2024, 30 (66), e202403030.
33. Xiao, Z.; Li, Z.; Jing, Y.; Li, T.; Jiang, D.; Duan, Y.; Ye, Q.; Zhou, L.; Chen, A.; Cai, J., Compressive strain induced superior HER performance of nickel in alkaline solution. Physical Chemistry Chemical Physics 2022, 24 (45), 27923-27929.
34. Gebremariam, G. K.; Jovanović, A. Z.; Pašti, I. A., Kinetics of Hydrogen Evolution Reaction on Monometallic Bulk Electrodes in Various Electrolytic Solutions. Catalysts 2023, 13 (10), 1373.
35. Monteiro, M. C. O.; Goyal, A.; Moerland, P.; Koper, M. T. M., Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media. ACS Catalysis 2021, 11 (23), 14328-14335.
36. Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M., Alkali Metal Cation Effects in Structuring Pt, Rh, and Au Surfaces through Cathodic Corrosion. ACS Applied Materials & Interfaces 2018, 10 (45), 39363-39379.