跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳裕斌
Yu-bin Chen
論文名稱: 電壓相依穿隧率對於單電子電晶體之電荷傳輸的影響
Bias-dependent tunneling rate effects on the charge transport of single electron transistors
指導教授: 郭明庭
Ming-ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 43
中文關鍵詞: 單電子電晶體電壓相依穿隧率
外文關鍵詞: Single electron transistor, bias-dependent tunneling rate
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室溫下操作的單電子電晶體,其量測電位及閘極電壓都非常大。因此穿隧率極易受應用電位及閘極電壓影響。本論文利用WKB近似來計算電壓相依的穿隧率。量子點到左、右電極的穿隧率是應用電位及閘極電壓的指數函數. 不僅如此,量子點能階、穿隧能障厚度及穿隧能障高度對於左、右穿隧率也有重要的影響。我們也發現量子點之電子佔據率深受電位相依的穿隧率影響, 穿隧電流出現類階梯的行為, 及庫倫震盪電流曲線則呈現出震盪波峰高度隨閘極電壓壓上升而升高的情況。模擬結果和實驗量測結果相當吻合.


    The large applied bias and gate voltage of single electron transistors operated at room temperatures lead to the charge transport far away from equilibrium , therefore the tunneling rates of electrons are significantly influenced by the applied bias and gate voltage. Using WKB approximation, we calculate the bias and gate voltage-dependent electron tunneling rates. The left and right tunneling rates of a single quantum dot (QD) are the exponential function of the applied bias and gate voltage. In addition, these tunneling rates also depend on the barrier height, barrier width and QD energy levels. We find that tunneling currents show the quasi- staircase behavior and Coulomb oscillatory current with respect to gate voltage increases with increasing gate voltage. These features get very good agreement with experimental measurements.

    摘要............................................................................................................................... I Abstract ......................................................................................................................... II 致謝.............................................................................................................................. III 目錄.............................................................................................................................. IV 圖目錄.......................................................................................................................... VI 第一章 導論.................................................................................................................. 1 1-1 單電子電晶體元件史 ..................................................................................... 1 1-2 研究動機 ......................................................................................................... 2 第二章 單電子電晶體之電流-電壓特性曲線 ............................................................ 7 2-1 電流-電壓特性曲線 ........................................................................................ 7 2-2 模型建立 ......................................................................................................... 9 2-3 不考慮電壓相依的穿隧率 ........................................................................... 12 第三章 電壓相依之穿隧率........................................................................................ 14 3-1 電壓相依之穿隧率公式推導 ....................................................................... 14 3-2 對稱的位障寬度對穿隧率的效應 ............................................................... 17 3-2-1 穿隧率和閘極電壓的關係 ........................................................................ 17 3-2-2 穿隧率和應用電位的關係 ........................................................................ 18 3-3 非對稱位障寬度對穿隧率的效應 ............................................................... 19 3-3-1 穿隧率和閘極電壓的關係 ........................................................................ 19 3-3-2 穿隧率和應用電位的關係 ........................................................................ 20 3-4 穿隧位能障高度對於穿隧率的效應 ........................................................... 21 3-4-1 穿隧率和閘極電壓的關係 ........................................................................ 21 3-4-2 穿隧率和應用電位的關係 ........................................................................ 22 第四章 電壓相依的穿隧率對穿隧電流的影響........................................................ 24 4-1 對稱位障寬度 ............................................................................................... 24 4-1-1 穿隧電流和閘極電壓的關係 .................................................................... 24 V 4-1-2 穿隧電流和應用電位的關係 .................................................................... 26 4-2 非對稱位障寬度 ........................................................................................... 28 4-3 穿隧位能障高度 ........................................................................................... 29 第五章 結論................................................................................................................ 31 參考文獻...................................................................................................................... 32

    [1] K. K. Likharev, “Correlated discrete transfer of single electrons in ultrasmall
    tunnel junctions,” IBM Journal of Research and Development, 32, 144, (1988).
    [2] T. A. Fulton and G.J. Dolan, “Observation of single-electron charging effects in
    small tunnel junctions,” Physical Review Letters, 59, 109, (1987).
    [3] Susan J. Angus, Andrew J. Ferguson, Andrew S. Dzurak and Robert G. Clark,
    “Gate-defined quantum dots in intrinsic silicon,” Nano Letters, 7, 2051, (2007).
    [4] W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Mottonen, K. W. Chan, A. Morello, A.
    S. Dzurak”Observation of the single-electron regime in a highly tunable silicon
    quantum dot” Appl. Phys. Lett. 95, 242102 (2009)
    [5] Shin, S. J.; Jung, C. S.; Park, B. J.; Yoon, T. K.; Lee, J. J.; Kim, S. J.; Choi, J. B.;
    Takahashi, Y.; Hasko, D. G.” Si-based ultrasmall multiswitching single-electron
    transistor operating at room-temperature” Applied Physics Letters, 97(10):
    103101(2010)
    [6] Sejoon Lee, Youngmin Lee, Emil B. Song, and Toshiro Hiramoto”Observation of
    Single Electron Transport via Multiple Quantum States of a Silicon Quantum Dot at
    Room Temperature” Nano Lett. 2014, 14, 71−77
    [7] V.N. Ermakov,” Resonant electron tunneling through double-degenerate local
    state with account of strong electron{phonon interaction” Physica E 8 (2000) 99-105
    [8] David M.T. Kuo and Y.C.Chang , ”Tunneling current spectroscopy of a
    nanostructure junction involving multiple energy levels”, Phys. Rev. Lett.
    99,086803(2007)

    QR CODE
    :::