跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳宗訓
Zong-Syun Wu
論文名稱: 質子照影成像使用GEANT4蒙特卡羅模擬研究
Study of Proton Range Radiography Imaging Using Geant4 Monte Carlo Simulation
指導教授: 張元翰
Yuan-Hann Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: geant4質子照影影像解析度
外文關鍵詞: image resolution, proton range radiography, geant4
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子照影(Proton Range Radiography 以下簡稱PRR)在質子治療中是一個影像品質控制工具。病人開始質子治療之前,PRR的即時影像可以使用與質子治療相同的質子束產生。比較PRR的影像與電腦斷層的影像,醫生可以知道腫瘤的變化來評估治療是否有效。PRR是由兩片氣體電子倍增器(Gas Electron Multiplier)以及三十片塑膠閃爍體(Plastic Scintillator)所組成。氣體電子倍增器為記錄粒子軌跡而塑膠閃爍體則是紀錄粒子在閃爍體的能量損失或是粒子距離。本論文主要利用上述兩個條件來重建影像,由這些影像來分析PRR的影像解析度以及找尋最低劑量並保有清晰影像的劑量值。


    Proton Range Radiography (PRR) is an image quality control tool in proton therapy. Before a patient begins proton irradiation, a real-time imaging can be generated by the same proton beam. By comparing with the computer tomography image; the doctor can know any changes of tumor to evaluate the validity of the treatment. The PRR detector includes a pair of gas electron multiplier and a range telescope made with a stack of 30 scintillators. The gas electron multiplier is to record the trajectory of the particle and the scintillator is to record the energy loss of particle passing through scintillator. In this thesis, we used these two conditions to reconstruct the image and analysis image resolution from these images. In order to find the minimum dosage require for clean picture, we through a simple algorithm to search the minimum dosage.

    中文摘要…………………………………………………………………i Abstract…………………………………………………………………ii 誌謝……………………………………………………………………iii Contents…………………………………………………………………iv Figures…………………………………………………………………vii Tables……………………………………………………………………ix Chapter 1 Introduction………………………………………………1 1-1 Overview of Proton Therapy ……………………………………1 1-2 Introduction to Proton Range Radiography (PRR)…………1 1-3 Motivation of this Studying……………………………………2 Chapter 2 The Physics of Charged Particle Interaction in Matter……3 2-1 Type Interactions of Charged Particle with Matter ……3 2-1-1 Coulomb Force Interaction of the Charged Particle with Orbital Electron for b >> a (soft collision)……………4 2-1-2 Coulomb Force Interaction of the Charged Particle with Orbital Electron for b ≈ a (hard collision)……………4 2-1-3 Coulomb Force Interaction of the Charged Particle with the External Nuclear Field for b <<a (bremsstrahlung production)………………………………………………………………4 2-2 Energy Loss of Charged Particle………………………………6 2-2-1 General Concept of Stopping Power…………………………6 2-2-1-A Bethe Collision Stopping Power for Heavy Charged Particle…………………………………………………………………6 2-2-1-B Mass Radiative Stopping Power……………………………8 2-2-1-C Total Mass Stopping Power of Charged Particle………9 2-2-2 The CSDA Range of Charged Particle………………………9 2-2 Multiple Coulomb Scattering…………………………………11 2-3 The Bragg Peak……………………………………………………12 Chapter 3 Overview of Proton Range Radiography………………14 3-1The Instrument of Proton Range Radiography………………14 3-1-1 Phantom…………………………………………………………15 3-1-2 GEM (Gas Electron Multiplier)……………………………15 3-1-3 Plastic Scintillator…………………………………………17 3-1-4 Wavelength Shifter (WLS)……………………………………18 3-2 Readout System……………………………………………………19 3-3 Beam Test…………………………………………………………21 3-3-1 Detector Test and Calibration……………………………21 3-3-2 Measurements with phantoms…………………………………23 3-4 The Geant4 Monte Carlo Simulation…………………………25 Chapter 4 Data Analysis and Discussion of Result……………29 4-1 The Geant4 Simulated Result and Verification……………29 4-1-1 The Simulated Beam Energy by Geant4 Monte Carlo Software…………………………………………………………………29 4-1-2 The Fluence and Range Straggling…………………………31 4-1-3 General Discussion……………………………………………32 4-2 The Analysis of Image Resolution……………………………34 4-2-1 The Procedure of Image Resolution………………………34 4-2-2 General Discussion……………………………………………37 4-3 The Procedure of Algorithmic Method………………………38 4-3-1 The Median Filter Algorithmic Method……………………38 4-3-2 The Flood Fill Algorithmic Method………………………39 4-4 Radiation Dose and Unit………………………………………40 4-4-1 Radiation Dose Unit…………………………………………40 4-4-2 Radiation Dose Equivalent…………………………………40 4-5 The Selection of Residual Object in Image by Algorithmic Method…………………………………………………43 4-5-1 The Procedure of Image Selection…………………………43 4-5-2 General Discussion……………………………………………47 Chapter 5 Summary……………………………………………………49 Reference ………………………………………………………………51

    [1] http://mhlclinics.com/proton_therapy.html
    [2] http://project-aqua.web.cern.ch/project-aqua/
    [3] Ervin B. Podgorsak, "Radiation Physics for Medical Physicists", P.247, Spriger, New York, (2010).
    [4] Brian J McParland,"Nuclear Medicine Radiation Dosimetry: Advanced Theoretical Principles", P.316, New York,(2011).
    [5] Frank H. Attix, "Introduction to Radiological Physics and Radiation Dosimetry.", P, John Wiley & Sons Inc., New York, (1986).
    [6] James Edward Turner, "Atoms, Radiation, and Radiation Protection", John Wiley & Sons Inc., New York, (1986).
    [7]http://jicru.oxfordjournals.org/content/7/2/11/F4.expansion
    [8] U. Amaldi et al ,"Construction, test and operation of a proton range radiography system",Nucl. Instr. and Meth. A, 629 (2010), p. 337.
    [9] M. Beyzadeoglu, et al, "Basic Radiation Oncology", Spiger, New York, (2010).
    [10] A. Bressan et al.,"Two-dimensional readout of GEM detectors",Nucl.Instr. and Meth. A, 425 (1999), p. 254
    [11] Stefaan Tavernier,"Experimental Techniques in Nuclear and Particle Physics",P.137, Spriger, New York, (2010).
    [12] Syed Naeem Ahmed "Physics and Engineering of Radiation Detection", P.339, ELSEVIER, (2007).
    [13] D. Watts, et al., "A Proton Range Telescope for Quality Assurance in Hadrontherapy", Proc. IEEE Nuclear Science Symposium (2009).
    [14] Geant4 Collaboration, "Geant4 User''s Guide for Application Developers", 2007.
    [15] G. Dougherty, "Digital Image Processing for Medical Applications", Cambridge, 2009.
    [16] Rafael C.Ganzalez, etc, "Digital Image Processing 2nd",Prentice Hall, 2002
    [17] Harald Paganetti,," PROTON THERAPY PHYSICS",CRC Press, 2011

    QR CODE
    :::