| 研究生: |
紀仲嘉 Ji Zhong-Jia |
|---|---|
| 論文名稱: |
利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池 High-Performance Perovskite Solar Cells Fabricated via Marangoni Effect |
| 指導教授: |
詹佳樺
Chan Chia-Hua |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 高效率 、鈣鈦礦太陽能電池 、馬倫哥尼效應 、低毒性反溶劑 、奈米結構 |
| 外文關鍵詞: | High-Efficiency, Perovskite solar cells, Marangoni effect, Low toxicity anti-solvent, Nanostructure |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新世代鈣鈦礦太陽能電池在短短幾年內效率已突破 22%,以非常快的速度逼近矽晶太陽能電池,而在高效率的鈣鈦礦太陽能電池中,緻密、無孔洞、大晶粒、高結晶品質的鈣鈦礦層,一直是科學家研究的重點。本研究中使用 Single-Step 配合反溶劑法製作高品質鈣鈦礦層,研究發現反溶劑甲苯旋塗後會與鈣鈦礦前驅液溶劑因表面張力差形成「馬倫哥尼應」,此效應會使 MAI-PbI2-DMSO 中間相分佈不均,造成孔洞與結晶缺陷,為解決此效應我們利用一種簡單的延遲熱退火機制,可有效使中間相均勻化,在 100℃退火後形成高品質高覆蓋率的鈣鈦礦結晶。研究藉由 SEM, XRD, AFM 與 EIS 等儀器分析,找出最佳的優化參數並製作成電池元件,電池效率從無延遲退火的 13.58%提升至最佳參數延遲 40min 退火的 18.02 %(增益 32.69%)。
此外,為了取代傳統高毒性的反溶劑與加快製程速度,本研究選用低毒性的反溶劑乙酸乙酯(EA),利用其低表面張力高蒸發速度等優勢,快速製備高品質的鈣鈦礦層,研究發現藉由調整 EA 旋塗的用量可以有效解決 EA 揮發太快所造成的鈣鈦礦層孔洞缺陷現象,調整後以 500ul 反溶劑用量有最佳 16.39%的效率,雖然效率比不上優化後的甲苯,但在電池元件的製程中可縮短馬倫哥尼效應需要等待的時間,有助於降低大量製程鈣鈦礦太陽能電池的時間與製作成本。
最終,本研究結合延遲熱退火機制與奈米結構 FTO 基板技術,藉由提高鈣鈦礦層品質、電極與電子傳輸層接觸面積以及增益鈣鈦礦層吸光效率等優點,成功地製造出具有高電流(23.17mA/cm2)、高電壓(1.07V)、高 FF(77.62%)、低遲滯指數(0.05)以及效率高達 19.29%的高效率鈣鈦礦太陽能電池。
In this study, we used Single-Step and anti-solvent methods to fabricate a MAPbI3-based perovskite solar cell. However, using the toluene as an anti-solvent will induce the "Marangoni effect" due to difference of the surface tension at the interface between the dripped solvent and the perovskite precursor. This effect will cause non-uniform distribution of the intermediate phase (MAI-PbI2-DMSO) which will form unexpected voids inside the perovskite layer leading to a low-quality perovskite film. Therefore, we introduce a simple delayed-annealing method to achieve a high-quality and high-coverage perovskite layer which can significant improve the non-uniform distribution of the intermediate phase. We use the
SEM(Scanning Electron Microscope), XRD(X-ray Diffractometer), AFM (Atomic Force Microscopic) and EIS(Electrochemical Impedance Spectroscopy) to observe and analyze the quality of perovskite films. In comparison with the control sample (without delayed-annealing), the power conversion efficiency (PCE) will increase from 13.58% to 18.02% (enhanced 32.69%) with the sample annealing at 100℃ for 40 min. Moreover, to replace the traditional toxic anti-solvent and realize a rapid process of forming a high-quality perovskite film, a low-toxic anti-solvent ethyl acetate (EA) is chosen to rapidly fabricate high-quality perovskite layers with the advantages of low surface tension and high evaporation rate. After using EA as the alternative anti-solvent, the highest PCE is 16.39% with dripping the EA of 500ul.
Although the PCE is lower than using traditional toluene as the anti-solvent, it’s unnecessary treating with annealing process for 40 mins to suppress the Marangoni effect which has benefits to reduce the time and cost of fabricate the perovskite solar cells.
Additionally, we further incorporate with nanostructures on the FTO surface to increase the absorption of perovskite layer and contact area between FTO surface and mesoporous layer which can effectively increase the electron transport efficiency.
Finally, the PCE will eventually increase to 19.29% while the sample treated with delayed-annealing method and introduced with the patterned-FTO substrate.
[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka,
“Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[2] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, and J. H. Noh, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[3] N. R. E. L. (NREL). "Best Research-Cell Efficiencies," https://www.nrel.gov/pv/.
[4] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications,” Journal of Materials Chemistry A, vol. 1, no. 18, pp. 5628-5641, 2013.
[5] S. D. Stranks, and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nature nanotechnology, vol. 10, no. 5, pp. 391-402, 2015.
[6] Wikipedia. "The solar radiation spectrum," https://en.wikipedia.org/wiki/Solar_irradiance.
[7] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-93, Oct 5, 2011.
[8] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci Rep, vol. 2, pp. 591, 2012.
[9] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[10] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, Shaik M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nature Energy, vol. 1, no. 10, pp. 16142, 2016.
[11] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-8, Sep 19, 2013.
[12] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, and N. G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat Nanotechnol, vol. 9, no. 11, pp. 927-32, Nov, 2014.
[13] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications,” Journal of Photonics for Energy, vol. 6, no. 2, pp. 022001, 2016.
[14] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells,” Advanced Functional Materials, vol. 24, no. 21, pp. 3250-3258, 2014.
[15] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014.
[16] J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau, “Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell,” ACS Appl Mater Interfaces, vol. 7, no. 43, pp. 24008-15, Nov 4, 2015.
[17] L. Zhang, S. Tian, Z. Yu, F. Zhang, F. Niu, X. Li, J. Song, P. Zeng, and J. Lian, “Rational Solvent Annealing for Perovskite Film Formation in Air Condition (July 2017),” IEEE Journal of Photovoltaics, vol. 7, no. 5, pp. 1338-1341, 2017.
[18] F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel, and W. C. Choy, “Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells,” ACS nano, vol. 9, no. 1, pp. 639-646, 2015.
[19] Q. Y. Xu, D. X. Yuan, H. R. Mu, F. Igbari, Q. Bao, and L. S. Liao, “Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing,” Nanoscale Res Lett, vol. 11, no. 1, pp. 248, Dec, 2016.
[20] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells,” Science, vol. 353, no. 6294, pp. 58-62, 2016.
[21] R. Kang, J.-E. Kim, J.-S. Yeo, S. Lee, Y.-J. Jeon, and D.-Y. Kim, “Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate,” The Journal of Physical Chemistry C, vol. 118, no. 46, pp. 26513-26520, 2014.
[22] L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, and Y. Zhu, “Multi-step slow annealing perovskite films for high performance planar perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 141, pp. 377-382, 2015.
[23] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature Materials, vol. 13, no. 9, pp. 897-903, 2014.
[24] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew Chem Int Ed Engl, vol. 53, no. 37, pp. 9898-903, Sep 8, 2014.
[25] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” J Am Chem Soc, vol. 137, no. 27, pp. 8696-9, Jul 15, 2015.
[26] W. Zhu, L. Kang, T. Yu, B. Lv, Y. Wang, X. Chen, X. Wang, Y. Zhou, and Z. Zou, “Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells,” ACS Appl Mater Interfaces, vol. 9, no. 7, pp. 6104-6113, Feb 22, 2017.
[27] Y. Li, J. Wang, Y. Yuan, X. Dong, and P. Wang, “Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: the role of intermediate phase content in the as-prepared thin films,” Sustainable Energy & Fuels, vol. 1, no. 5, pp. 1041-1048, 2017.
[28] Y. Gao, L. Yang, F. Wang, Y. Sui, Y. Sun, M. Wei, J. Cao, and H. Liu, “Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%,” Superlattices and Microstructures, vol. 113, pp. 761-768, 2018.
[29] T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y.-B. Cheng, and J. Zhong, “Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells,” Advanced Energy Materials, vol. 7, no. 20, pp. 1700576, 2017.
[30] M. Yin, F. Xie, H. Chen, X. Yang, F. Ye, E. Bi, Y. Wu, M. Cai, and L. Han, “Annealing-free perovskite films by instant crystallization for efficient solar cells,” Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8548-8553, 2016.
[31] C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, and G. Cao, “Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film,” Advanced Energy Materials, vol. 7, no. 9, pp. 1602017, 2017.
[32] C. Marangoni, “On the expansion of a drop of liquid floating on the surface of another liquid,” Tipographia dei fratelli Fusi, Pavia, 1865.
[33] B.Costa. "Tears of wine and the Marangoni effect," https://www.comsol.com/blogs/tears-of-wine-and-the-marangoni-effect/.
[34] C. Girotto, D. Moia, B. P. Rand, and P. Heremans, “High-Performance Organic Solar Cells with Spray-Coated Hole-Transport and Active Layers,” Advanced Functional Materials, vol. 21, no. 1, pp. 64-72, 2011.
[35] H. Ishihara, S. Sarang, Y.-C. Chen, O. Lin, P. Phummirat, L. Thung, J. Hernandez, S. Ghosh, and V. Tung, “Nature inspiring processing route toward high throughput production of perovskite photovoltaics,” J. Mater. Chem. A, vol. 4, no. 18, pp. 6989-6997, 2016.
[36] F. Ye, F. Xie, M. Yin, J. He, Y. Wang, W. Tang, H. Chen, X. Yang, and L. Han, “Effect of thermal-convection-induced defects on the performance of perovskite solar cells,” Applied Physics Express, vol. 10, no. 7, pp. 075502, 2017.
[37] A. A. Sutanto, S. Lan, C.-F. Cheng, S. B. Mane, H.-P. Wu, M. Leonardus, M.-Y. Xie, S.-C. Yeh, C.-W. Tseng, C.-T. Chen, E. W.-G. Diau, and C.-H. Hung, “Solvent-assisted crystallization via a delayed-annealing approach for highly efficient hybrid mesoscopic/planar perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 172, pp. 270-276, 2017.
[38] 黃柏樵, 「具奈米結構之氟參雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究」,國立中央大學,碩士論文, 民國106年。
[39] 張哲嘉, 「利用鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究」,國立中央大學,碩士論文, 民國106年。
[40] W. Zhou, P. Zhou, X. Lei, Z. Fang, M. Zhang, Q. Liu, T. Chen, H. Zeng, L. Ding, J. Zhu, S. Dai, and S. Yang, “Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH3NH3PbI3 to Phase-Pure CH3NH3PbCl3 via Hydrochloric Acid Vapor Annealing Post-Treatment,” ACS Appl Mater Interfaces, vol. 10, no. 2, pp. 1897-1908, Jan 17, 2018.
[41] B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan, and K. Xiao, “Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions,” J Am Chem Soc, vol. 137, no. 29, pp. 9210-3, Jul 29, 2015.
[42] E. Nouri, M. R. Mohammadi, Z. X. Xu, V. Dracopoulos, and P. Lianos, “Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter,” Phys Chem Chem Phys, vol. 20, no. 4, pp. 2388-2395, Jan 24, 2018.
[43] H. W. Chen, T. Y. Huang, T. H. Chang, Y. Sanehira, C. W. Kung, C. W. Chu, M. Ikegami, T. Miyasaka, and K. C. Ho, “Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers,” Sci Rep, vol. 6, pp. 34319, Oct 4, 2016.
[44] W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, and X. Zhao, “Perovskite solar cell with an efficient TiO(2) compact film,” ACS Appl Mater Interfaces, vol. 6, no. 18, pp. 15959-65, Sep 24, 2014.
[45] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, and M. A. Alam, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science, vol. 347, no. 6221, pp. 522-525, 2015.
[46] C. Wang, C. Xiao, Y. Yu, D. Zhao, R. A. Awni, C. R. Grice, K. Ghimire, I. Constantinou, W. Liao, and A. J. Cimaroli, “Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells,” Advanced Energy Materials, vol. 7, no. 17, 2017.
[47] B. Chen, M. Yang, S. Priya, and K. Zhu, “Origin of J-V Hysteresis in Perovskite Solar Cells,” J Phys Chem Lett, vol. 7, no. 5, pp. 905-17, Mar 3, 2016.
[48] R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, and J. Bisquert, “Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis,” J Phys Chem Lett, vol. 5, no. 13, pp. 2357-63, Jul 3, 2014.
[49] U. W. Paetzold, W. Qiu, F. Finger, J. Poortmans, and D. Cheyns, “Nanophotonic front electrodes for perovskite solar cells,” Applied Physics Letters, vol. 106, no. 17, pp. 173101, 2015.