| 研究生: |
林育 Yu Lin |
|---|---|
| 論文名稱: |
二維三角晶格結構耦合電極之熱電特性 Thermoelectric properties of finite two dimensional triangular lattices coupled to electrodes |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 二維材料 、熱電材料 |
| 外文關鍵詞: | 2D matrials, thermoelectric matrials |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本質二維材料吸引了很多研究人員的注意,其三角晶格結構(TLs)造就了特殊的傳輸性質和光學特性,因此十分值得去研究三角晶格耦合電極的能量獲取及熱電特性。二維三角晶格結構的傳輸係數由Green function方程式計算其彈道傳輸。一個重要的發現是電子和電洞在power factor上的不對稱現象,同時電子最大的power factor遠大於電洞的power factor。在室溫下,兩者最大的power factor發生在化學位勢靠近band edge處。Power factor的增加是由於電導的增加以及穩定的Seebeck coefficient。當band gap十倍大於熱能時,適合以one band model預測熱電特性的優化。
Novel intrinsic two dimensional materials attract many research’s attention. The optical properties and unusual transport of these materials mainly origin from the triangular lattices (TLs). As a result, it is desirable for the application of energy harvesting to study the thermoelectric properties of 2D TLs coupled to electrodes. The transmission coefficient of 2D TLs is calculated by using the Green’s function technique for illustrating ballistic transports. One of important finding is the power factor (PF) with an electron-hole asymmetry behavior. Meanwhile, the maximum PF of electrons is significantly larger than that of hole. At room temperature, the maximum PF of electrons is given by the position of chemical potential of electrodes near the band edge of TLs. The enhancement of PF with increasing electronic states results from the constant Seebeck coefficient and enhancement of electrical conductance. When the band gap is ten times larger than thermal energy, the prediction of one-band model to thermoelectric optimization is appropriate.
[1.] G. D. Mahan and J. Sofot, "The best thermoelectric", Vol. 93, pp. 7436-7439, July (1996)
[2.] G. D. Mahan and L. M. Woods, "Multilayer Thermionic Refrigeration", volume 80, NUMBER 18 (1998)
[3.] G. Chen, "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices", Physical Review B volume 57, number 23 (1998)
[4.] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial and T. Caillat, "Recent developments in thermoelectric materials", International Materials Reviews vol. 48 No (2003)
[5.] David M.-T. Kuo and Yia-chung Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions", Physical Review B 81, 205321 (2010)
[6.] Robert S. Whitney, "Most Efficient Quantum Thermoelectric at Finite Power Output", PRL 112, 130601 (2014)
[7.] David M. T. Kuo, Chih-Chieh Chen and Yia-Chung Chang, "Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy", Physical Review B 95, 075432 (2017)
[8.] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts & Brooks O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Research Triangle Institute, Research Triangle Park, North Carolina 27709 (2001)
[9.] Akram I. Boukai1, Yuri Bunimovich1, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A. Goddard III1 & James R. Heath1, "Silicon nanowires as efficient thermoelectric materials", vol 451 10 January (2008)
[10.] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices", (2002)
[11.] David M-T Kuo and Yia-Chung Chang, "Thermoelectric properties of a quantum dot array connected to metallic electrodes", Nanotechnology 24 175403 (2013)
[12.] Cherie R. Kagan and Christopher B. Murray, "Charge transport in strongly coupled quantum dot solids", Nature Nanotechnology vol 10 December (2015)
[13.] A. K. Geim and I. V. Grigorieva1, "Van der Waals heterostructures", 25 July vol 499 (2013)
[14.] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, "2D materials and van der Waals heterostructures", 29 July vol 353 issue 6298 (2016)
[15.] Sujay B. Desai, Gyungseon Seol, Jeong Seuk Kang, Hui Fang, Corsin Battaglia, Rehan Kapadia, Joel W. Ager, Jing Guo, and Ali Javey, "Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2", Nano Lett (2014)
[16.] Li-Dong Zhao1, Shih-Han Lo2, Yongsheng Zhang2, Hui Sun3, Gangjian Tan1, Ctirad Uher3, C. Wolverton2, Vinayak P. Dravid2& Mercouri G. Kanatzidis1, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals", 14, 4592−4597 (2014)
[17.] Kedar Hippalgaonkar, Ying Wang,1 Yu Ye,1 Diana Y. Qiu, Hanyu Zhu, Yuan Wang, Joel Moore, Steven G. Louie, and Xiang Zhang, "High thermoelectric power factor in two-dimensional crystals of MoS2", Physical Review B 95, 115407 (2017)
[18.] Cheng Chang,1 Minghui Wu, Dongsheng He, Yanling Pei, Chao-Feng Wu, Xuefeng Wu, Hulei Yu, Fangyuan Zhu, Kedong Wang, Yue Chen, Li Huang, Jing-Feng Li, Jiaqing He, Li-Dong Zhao1, "3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals", Chang et al. Science 360, 778–783 (2018)
[19.] D. D. Fan, H. J. Liu, L. Cheng, P. H. Jiang, J. Shi, and X. F. Tang, "MoS2 nanoribbons as promising thermoelectric materials", Appl. Phys. Lett. 105, 133113 (2014)
[20.] Wen Huang, Xin Luo, Chee Kwan Gan, Su Ying Quek and Gengchiau Liang, "Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2", Phys.Chem.Chem.Phys. 16, 10866 (2014)
[21.] Yulou Ouyang, Yuee Xie, Zhongwei Zhang, Qing Peng, and Yuanping Chen, "Very high thermoelectric figure of merit found in hybrid transition-metaldichalcogenides", Appl. Phys. 120, 235109 (2016)
[22.] G. Özbal ,1 R. T. Senger, C. Sevik, and H. Sevinçli, "Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides", Physical Review B 100, 085415 (2019)
[23.] Hongjae Moon, Joonho Bang, Seokkyoon Hong, Gwansik Kim, Jong Wook Roh,§ Jeongmin Kim, and Wooyoung Lee, "Strong Thermopower Enhancement and Tunable Power Factor via Semimetal to Semiconductor Transition in a Transition-Metal Dichalcogenide", ACS Nano, 13, 13317−13324 (2019)
[24.] Yan Wang, Jong Chan Kim, Ryan J. Wu, Jenny Martinez, Xiuju Song, Jieun Yang, Fang Zhao, Andre Mkhoyan, Hu Young Jeong & Manish Chhowalla, "Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors", Nature 568 70-74 (2019)
[25.] Xiaofeng Qian, Junwei Liu, Liang Fu, Ju Li1, "Quantum spin Hall effect in two-dimensional transition metal dichalcogenides", Science vol 346 issue 6215 (2014)
[26.] Xiaomu Wang, Aaron M. Jones, Kyle L. Seyler, Vy Tran, Yichen Jia, Huan Zhao, HanWang, Li Yang, Xiaodong Xu and Fengnian Xia, "Highly anisotropic and robust excitons in monolayer black phosphorus", Nature Nanotechnology vol 10 (2015)
[27.] Ying Wang1, Jun Xiao1, Hanyu Zhu1, Yao Li, Yousif Alsaid1, King Yan Fong, Yao Zhou, Siqi Wang1, Wu Shi, Yuan Wang1,Alex Zettl, Evan J. Reed & Xiang Zhang, "Structural phase transition in monolayer MoTe2 driven by electrostatic doping", Nature vol 550 (2017)
[28.] Ang-Yu Lu1, Hanyu Zhu, Jun Xiao, Chih-Piao Chuu, Yimo Han, Ming-Hui Chiu1, Chia-Chin Cheng, Chih-Wen Yang, Kung-Hwa Wei, Yiming Yang, Yuan Wang, Dimosthenis Sokaras, Dennis Nordlund, Peidong Yang, David A. Muller, Mei-Yin Chou, Xiang Zhang, and Lain-Jong Li1, "Janus monolayers of transition metal dichalcogenides", Nature Nanotechnology vol 12 August (2017)
[29.] Ming-Yang Li, Yumeng Shi, Chia-Chin Cheng, Li-Syuan Lu, Yung-Chang Lin, Hao-Lin Tang, Meng-Lin Tsai, Chih-Wei Chu, Kung-Hwa Wei, Jr-Hau He, Wen-Hao Chang, Kazu Suenaga, Lain-Jong Li, "Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface", Science vol 349 issue 6247 31 July (2015)
[30.] Aaron D. Franklin, "Nanomaterials in transistors: From high-performance to thin-film applications", Science vol 349 issue 6249 14 August (2015)
[31.] Deji Akinwande1, Cedric Huyghebaert, Ching-Hua Wang, Martha I. Serna1, Stijn Goossens, Lain-Jong Li, H.-S. Philip Wong & Frank H. L. Koppens, "Graphene and two-dimensional materials for silicon technology", Nature vol 573 26 September (2019)
[32.] Jia Li1, Xiangdong Yang, Yang Liu, Bolong Huang, Ruixia Wu1, Zhengwei Zhang1, Bei Zhao1, Huifang Ma1, Weiqi Dang1, Zheng Wei, Kai Wang, Zhaoyang Lin, Xingxu Yan, Mingzi Sun, Bo Li1, Xiaoqing Pan, Jun Luo, Guangyu Zhang, Yuan Liu1, Yu Huang, Xidong Duan1 & Xiangfeng Duan, "General synthesis of two-dimensional van der Waals heterostructure arrays", Nature Vol 579 19 March (2020)
[33.] Hartmut Haug, Antti-Pekka Jauho, "Quantum Kinetics in Transport and Optics of Semiconductors"
[34.] David M. T. Kuo, "Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays", AIP Advances 10, 045222 (2020)
[35.] Tsuyoshi Horiguchi, "Lattice Green’s function for anisotropic triangular lattice", Physica A 178 351-363 (1991)