| 研究生: |
張駿 Chung Chang |
|---|---|
| 論文名稱: |
土石流地聲與流動特性之室內實驗與現地監測 |
| 指導教授: | 周憲德 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 地聲 、土石流 、流動高度 、快速傅立葉(FFT) 、希爾伯特-黃轉換(HHT) |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土石流是台灣山區最常致災的坡地災害之一,為降低災害損害,除了由事件發生前的降雨量提出預報,也能利用現地傳感器偵測土石流的流動高度、地表震動變化,以得知其發生強度與時間,進而進行相應對策與預警。本研究分別利用室內實驗與現地監測之地聲、超聲波與影像系統,將顆粒流與土石流之流動特性與地聲訊號相互比較驗證,以分析兩者之相關性。本文主要探討 2015/5/28 梅雨期間的鋒面降雨所引起之火炎山土石流事件。
在室內實驗中,由監測資料顯示顆粒流動特徵頻率約300 Hz,且其強度與流動高度有明顯的正相關性。在現地監測中,礫石型土石流主頻分佈比泥流型濃度土石流頻譜高;本次事件礫石型頻譜特性介於30 ~ 45Hz,泥流型土石流頻譜特性則在 20 ~ 30Hz 間。藉由影像系統驗證地聲與超聲波系統,得知地聲儀測得地聲數據特性與流動高度之間的相關性,以作為土石流預警系統之闕值訂定依據。
Debris flows are one of the most common and hazardous slope disasters in Taiwan. The warning system based on sensors detecting flow heights and ground vibrations of debris flows provide some lead time for evacuation. Both field monitoring and laboratory experiments are carried out by employing geophones, ultrasound sensor and camera/CCD-image systems. The flow characteristics and ground vibration signals of the granular flows in the laboratory and the rainfall-induced debris flows on May 28, 2015 at the Houyenshan are analyzed and compared with each other. The characteristics frequency of ground vibration by granular flows is about 300 Hz, and the geophone intensity are correlated with flow heights. The main frequency of ground vibrations by viscous debris flows is higher than the dilute debris flows. The former is between 30 and 45Hz and the latter is between 20 and 30Hz. With validation through CCD images, we further correlated ground vibrations and flow heights, which can be regarded as the basis of debris-flow warning system.
[1] 周憲德、楊祥霖、李璟芳、黃郅軒 (2015),「火炎山土石流之流動型態與地聲特性分析」,中華水土保持學報,46(2) : 71-78。
[2] 楊祥霖 (2014),「火炎山土石流之現地監測與影像及地聲分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[3] 詹錢登、李明熹、郭峰豪 (2003),「以降雨因子進行土石流警戒值訂定」,行政院農業委員會水土保持局九十二年度土石流防災暨監測科技計畫成果彙編,59-76。
[4] Kogelnig A., Hübl J., Suriñach E., Vilajosana I., and McArdell B.W. (2011), “Infrasound produced by debris flow: propagation and frequency content evolution”, Nat. Hazards Earth Syst. Sci., 70(3) : 1713-1733.
[5] Huang C.-J., Yin H.-Y., and Chen C.-Y. (2007), “Ground vibrations produced by rock motions and debris flows”, Journal of Geophysical Research, 112, F02014.
[6] Huang C.-J., Yeh C.-H., Chen C.-Y., and Chang S.-T. (2008), “Ground vibrations and airborne sounds generated by motion of rock in a river bed”, Nat. Hazards Earth Syst. Sci., 8 : 1139-1147.
[7] Occhiena C., Coviello V., Arattano M., Chiarle M., Morra di Cella U., Pirulli M., Pogliotti P., and Scavia C. (2012), “Analysis of microseismic signals and temperature recordings for rock slope stability investigations in high mountain areas”, Nat. Hazards Earth Syst. Sci., 12 : 2283-2298.
[8] Abancó C., Hürlimann M., Fritschi B., Graf C., and Moya J. (2012), “Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems”, Sensors , 12 : 4870-4891.
[9] Abancó C., Hürlimann M., and Moya J. (2014), “Analysis of the ground vibration generated by debris flows and other torrential processes at the Rebaixader monitoring site (Central Pyrenees, Spain)”, Nat. Hazards Earth Syst. Sci., 14 : 929-943.
[10] Scott E. D., Hayward C. T., Kubichek R. F., Hamann J. C., andPierre J. W. (2004), “Results of Recent Infrasound Avalanche Monitoring Studies”, International Snow Science Workshop.
[11] Comiti F., Marchi L., Macconi P., Arattano M., Bertoldi G., Borga M., Brardinoni F., Cavalli M., D’Agostino V., Penna D., and Theule J. (2014), “A new monitoring station for debris flows in the European Alps first observations in the Gadria basin”, Nat. Hazards Earth Syst. Sci., 73 : 1175-1198.
[12] Suwa H., Yamakoshi T., and Sato K. (1999), “Estimation of debris-flow discharge by monitoring ground tremor”, Journal of the Japan Society of Erosion Control Engineering, 52 : 5-13.
[13] Suwa H., Okano K., and Kanno T. (2009), “Behavior of flows monitored on test slops of Kamikamihorizawa Creek, Mount Yakedake, Japan”, International Journal of Erosion Control Engineering, 2 (2) : 33-45.
[14] Chou H.-T., Lee C.-F., Tu Y.-H., and Chen S.-C. (2013), “Debris Flow due to the Seepage-Induced Failure of a Granular Pile”, IAHR Congress.
[15] Bacchini M., and Zannoni A. (2003), “Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy)”, Nat. Hazards Earth Syst. Sci., 3 : 71–79.
[16] Arattano M., and Marchi L.(2008), “Systems and Sensors for Debris-flow Monitoring and Warning”, Sensors, 8 : 2436-2452.
[17] Arattano M., Marchi L., and Cavalli M. (2012), “Analysis of debris-flow recordings in an instrumented basin : confirmations and new findings”, Nat. Hazards Earth Syst. Sci., 12 : 679-686.
[18] Takezawa N., Yanagimachi T., Yamakoshi T., Tamura K., Suwa H., and Kanno T. (2010), “Estimation of frontal velocity of debris flows by monitoring the amplification rate of seismic wave”, interpraevent.