跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳俊銓
Chun-chuan Wu
論文名稱: 山洪濁流形成沖積扇之實驗研究
Experiment study of alluvial fans formed bytorrential floods
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 前積層沖積扇頂積層顆粒濃度質點影像測速法
外文關鍵詞: Sediment Concentration, Topset, Foreset, Alluvial Fan, PIV(Particle Image Velocimetry)
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高降雨強度及高降雨延時事件帶來山洪及相伴而生之岩屑崩滑、坡體
    失穩、土石流及洪流等事件,對居民及交通建設造成災害損失甚鉅。台灣
    東澳台九線 115.9K 及 116.1K 於 2010 年受梅姬颱風強降雨影響,引發土石
    流直接溢淹蘇花公路至太平洋海岸線而形成沖積扇(alluvial fan),本研究以
    此案例探討山洪濁流形成沖積扇之動態過程與堆積機制。
    本研究進行小尺度二維渠槽實驗,搭配高速攝影機,對顆粒流堆積歷
    程、前積層(foreset)及頂積層(topset)堆積角度、水深及流動層速度分佈作分
    析與討論。並使用不同顆粒粒徑(D)、水入流量(Q w )及顆粒入流量(Q s )作為實
    驗主要控制因素,後兩項之比值為本研究重要的無因次參數,初始水砂排
    放比(n 0 );而藉由簡單推算頂積層顆粒流量得到實際水砂排放比(n),以此無
    因次參數探討頂積層坡度變化關係,研究結果顯示頂積層坡度與水砂排放
    比成反比關係。
    本研究使用質點影像測速法(Particle Image Velocimetry, PIV)探討顆粒
    流動層速度分佈情形。研究結果顯示,在自由水面等同或略高於顆粒流表
    面時,受邊壁效應(wall effect)影響,流動層速度剖面遵循超穩態流變學
    (super-stable heap rheology, SSH)之指數分佈;而自由水面高於顆粒流表面許
    多時,流動層底部仍遵循 SSH 之指數分佈,但流動層頂部接近自由表面處
    受水流影響甚鉅,速度分佈較遵循 Bagnold 流變特性。


    Mountain floods accompanied with landslides, slope avalanches and debris
    flows often cause tremendous disasters to downstream residents and
    infrastructures. The dynamic process and deposit mechanism of alluvial fans by
    torrential flows is experimentally explored in this study. An acrylic flume
    experiment is adopted to observe the deposit progress of granular flows, deposit
    angle of foreset and topset, and flow patterns with a high-speed camera. The
    particle size (D), water discharge (Q w ), and sediment discharge (Q s ) dominates
    the flow patterns, and the slopes of foreset and topset mainly depend on
    sediment concentration (i.e., the ratio of sediment discharge to water discharge).
    The slope of topset increases with increasing sediment concentration. The
    velocity profiles of the flowing layer are explored by using particle image
    velocimetry (PIV). The velocity profiles in the flowing layer depict SSH
    rheology when the free surface is equal to or slightly higher than granular-flow
    surface. When the free surface is substantially higher than granular-flow surface,
    the lower part of the velocity profile in the flowing layer still obey SSH
    rheology. The upper part of velocity profiles near the free surface follow the
    Bagnold-type velocity profiles instead.

    摘 要 .................................................................................................... i ABSTRACT ......................................................................................... ii 誌 謝 .................................................................................................. iii 目 錄 .................................................................................................. iv 圖目錄 .................................................................................................. vi 表目錄 ................................................................................................... x 第一章 緒論 ......................................................................................... 1 1.1 前言 ........................................................................................................ 1 1.2 研究動機與目的 .................................................................................... 3 1.3 研究方法 ................................................................................................ 3 1.4 論文架構 ................................................................................................ 3 第二章 文獻回顧 ................................................................................. 6 2.1 沖積扇理論 ............................................................................................ 6 2.2 東部沖積扇案例 .................................................................................. 11 2.3 流速剖面流變特性 .............................................................................. 13 第三章 實驗配置與分析方法 .......................................................... 16 3.1 實驗渠槽配置 ...................................................................................... 16 3.2 影像擷取系統 ...................................................................................... 17 3.3 顆粒材料性質 ...................................................................................... 18 3.4 實驗步驟 .............................................................................................. 20 v 3.5 影像分析方法 ...................................................................................... 22 第四章 實驗結果與討論 ................................................................... 25 4.1 流量率定 .............................................................................................. 25 4.1.1 流槽漏斗顆粒出流量率定, Qs ................................................. 25 4.1.2 水流量率定, Qw ........................................................................ 32 4.1.3 初始水砂排放比, n0 ................................................................. 32 4.2 顆粒流動行為 ...................................................................................... 33 4.3 顆粒流動歷程 ...................................................................................... 34 4.4 顆粒流堆積角度 .................................................................................. 40 4.4.1 頂積層顆粒流量(qs)及實際水砂排放比(n) ............................ 40 4.4.2 前積層及頂積層角度 ............................................................... 45 4.5 水深及流動層速度剖面 ...................................................................... 53 4.5.1 水深 ........................................................................................... 53 4.5.2 流動層速度剖面 ....................................................................... 55 第五章 結論與建議 ........................................................................... 58 5.1 結論 ...................................................................................................... 58 5.2 建議 ...................................................................................................... 59 參考文獻 ............................................................................................. 60

    [1] Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M. (2005).
    Rheological stratification in experimental free-surface flows of granular–
    liquid mixtures. Journal Of Fluid Mechanics, 532, 269-319.
    [2] Beverloo, W. A., Leniger, H. A., and van de Velde, J. (1961). The flow of
    granular solids through orifices. Chemical Engineering Science, 15,
    260-269.
    [3] Bi, W., Delannay, R., Richard, P., Taberlet, N., and Valance, A. (2005).
    Two- and three-dimensional confined granular chute flows: experimental
    and numerical results. Journal of Physics: Condensed Matter, 17,
    S2457-S2480.
    [4] Bi, W., Delannay, R., Richard, P., and Valance, A. (2006). Experimental
    study of two-dimensional, monodisperse, frictional-collisional granular
    flows down an inclined chute. Physics Of Fluids, 18, 123-302.
    [5] Blair, T. C., and McPherson, J. G. (1994a). Alluvial fan processes and
    forms. Geomorphology of Desert Environments, 25, 334-402.
    [6] Blair, T. C., and McPherson, J. G. (1994b). Alluvial fans and their natural
    distinction from rivers based on morphology, hydraulic processes,
    sedimentary processes, and facies assemblages. Jour. Sediment. Res., 64,
    450-489.
    [7] Bull, W. B. (1977). The alluvial-fan environment. Progress In Physical
    Geography, 1, 222-270.
    [8] Capart, H., Young, D. L., and Zech, Y. (2002). Voronoi imaging methods
    for the measurement of granular flows. Experiments In Fluids, 32,
    121-135.
    [9] Chou, H. T., Lee, C. F., Chung, Y. C., and Hsiau, S. S. (2012a). Discrete 61
    element modelling and experimental validation(under review).
    [10] Chou, H. T., Lee, C. F., Lo, C. M., and Lin, C. P. (2012b). Landslide and
    alluvial fan caused by an extreme rainfall in Sual, Taiwan (ISL/NASL
    2012).
    [11] Gilbert, G. K. (1890). Lake Bonneville. Monographs of the U. S.
    Geological Survey, 1, 438 p.
    [12] Janda, A., Zuriguel, I., Garcimartin, A., Pugnaloni, L. A., and Maza, D.
    (2008). Jamming and critical outlet size in the discharge of a
    two-dimensional silo. EPL (Europhysics Letters), 84, 44002.
    [13] Lai, S. Y. J., and Capart, H. (2007). Two-diffusion description of
    hyperpycnal deltas. Journal of Geophysical Research, 112.
    [14] Meyer-Peter, E., and Muller, R. (1948). Formulas for Bed-Load transport.
    Proceedings of the 2nd Meeting of the International Association for
    Hydraulic Structures Research, IAHR, 39-64.
    [15] Parker, G. (1978). Self-formed straight rivers with equilibrium banks and
    mobile bed. Part 1. The sand-silt river. Journal of Fluid Mechanics, 89,
    109-125.
    [16] Parker, G., Paola, C., Whipple, K. X., and Mohrig, D. (1998). Alluvial
    Fans Formed by Channelized Fluvial and Sheet Flow. I: Theory. Journal
    of Hydraulic Engineering, 124, 985.
    [17] Postma, G., and Roep, T. B. (1985). Resedimented conglomerates in the
    bottomsets of Gilbert-type gravel deltas. Journal Of Sedimentary
    Research, 55, 874-885.
    [18] Saito, K. (1999). Development of Mountains and Alluvial Fans in Japan,
    Taiwan, and the Philippines. Geographical review of Japan. Series B, 72,
    162-172.
    [19] Silbert, L. E., Landry, J. W., and Grest, G. S. (2003). Granular flow down
    a rough inclined plane: Transition between thin and thick piles. Physics
    Of Fluids, 15, 1-10.[20] Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J.
    T., et al. (2003). Superstable Granular Heap in a Thin Channel. Physical
    Review Letters, 91, 264-301.
    [21] Thielicke, W., Stamhuis, E. J., D''Errico, J., Schwarz, D. M., Long, D.,
    Garcia, D., et al. (2010). PIVlab - time-resolved particle image
    velocimetry (PIV) tool. from
    http://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-tim
    e-resolved-particle-image-velocimetry-piv-tool
    [22] 黃郅軒 (2011). 儲槽內顆粒流動與發聲特性之研究. 國立中央大學土
    木工程研究所碩士論文.
    [23] 楊淑君 (1995). 台灣沖積扇的地形學研究. 國立臺灣師範大學地理學
    系博士論文

    QR CODE
    :::