跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭乃祺
Nai-Chi Hsiao
論文名稱: 台灣即時強地動觀測於地震預警之應用
The application of real-time strong-motion observations on the earthquake early warning in Taiwan
指導教授: 王乾盈
Chien-Ying Wang
辛在勤
Tzay-Chyn Shin
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 95
語文別: 中文
論文頁數: 178
中文關鍵詞: 振動圖層地振動參數預估P 波預警虛擬區域子網即時強地動觀測系統地震預警
外文關鍵詞: ShakeMaps, peak ground motion prediction, P-wave warning, virtual sub-network, real-time strong-motion monitoring system, earthquake early warning
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以中央氣象局即時強地動觀測系統為骨幹,發展台灣地震預
    警作業所需之相關研究。地震預警作業包含強震的即時觀測、振動參數
    的合理預估以及預警訊息的快速傳遞等3 個部分,本研究把重點放在觀測
    地震學的研究範疇,首先在即時強地動觀測系統的架構下,分別根據區
    域預警以及現地預警模式,進行地震參數測報的評估;然後蒐集中央氣
    象局自由場強震站所收錄到116 個中大型地震的強震記錄,採取2 階段迴
    歸分析的方法,建立台灣地區地振動參數的經驗預估模式,並根據即時
    作業情形,規劃3 種振動圖層的製作流程;最後則將研究結果綜合應用於
    台灣地區地震預警作業之規劃,並實際以近年來7 個顯著地震進行實例評
    估。
    歸納主要研究成果如下:(一)、利用虛擬的區域觀測子網,針對島
    內或近海規模大於4.5 的地震,可以將地震反應時間縮短在20 秒以內,平
    均為18.8±3.8 秒,對於距離震央約60 公里以外的地區開始具有預警能
    力;(二)、參考現地預警模式,探討以P 波垂直向位移振幅及頻率做為
    預警發布依據的可行性,結果發現P 波位移振幅0.1 公分可設定為判斷台
    灣島內或近海區域是否發生規模6 以上地震的門檻,並獲得1 組利用P 波
    頻率相關參數推估地震規模之經驗公式;(三)、利用迴歸分析方法,建
    立台灣地區地振動參數的經驗預估公式,所預估參數包括最大地動加速
    度值PGA、最大地動速度值PGV、週期0.3 秒、1.0 秒和3.0 秒之反應譜
    加速度值Sa,以及頻率0.5、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0
    及10.0Hz 的加速度峰值;(四)、根據即時作業情形,本研究規劃3 種
    振動圖層的製作流程,以分別提供速報及預警階段緊急應變之依據,根
    據評估,針對規模5 以上地震,大部分預估振動圖層的相關係數可以達到
    0.8 以上,平均格點的放大率則大都集中在0.5 至1.5 倍之間;(五)、根
    據區域預警模式實際運作結果以及P 波預警模式資料分析統計,在中央氣象局即時強地動觀測系統的架構下,配合地振動參數經驗預估模式,
    建立台灣地區的預警作業架構;根據2002 年後7 個規模大於6 地震的實
    例評估,反應時間幾乎都可以縮短在15 秒以內,針對島內地震,甚至可
    以在10 秒內發出強震發生的訊息,除了2003 年12 月10 日成功地震,對
    於陸地部分,其預警的空白區可以縮小在30 公里的範圍以內。


    Based on the real-time strong-motion monitoring system implemented by
    Central Weather Bureau (CWB), we developed and evaluated the earthquake
    early warning (EEW) application in Taiwan. In the study, we mainly
    concentrated our attention upon two essential parts of EEW, which one is rapid
    determination of earthquake parameters, and the other is accurate prediction of
    peak ground motions.
    On determining earthquake parameters, in order to shorten the earthquake
    response time, a virtual sub-network approach is utilized at first. Under the
    practical experiment since 2001, for monitoring inland or near offshore
    earthquakes with magnitude greater than 4.5, the response time can be shorten
    as 18.8±3.8 sec averagely. Therefore, it can provide early warning before
    S-wave arrival for metropolitan areas located 60 km away from the epicenter.
    For the sake of further reducing the area of so-called blind-zone which cannot
    provide early warning, we also attempted to utilize vertical displacement
    records of P-wave as a basis to issue warnings. As results, we found that the
    amplitude 0.1 cm can be used as a criterion to judge if an earthquake above
    magnitude 6.0 is occurring in Taiwan Island. Furthermore, we also derived a
    set of frequency-based formulas simultaneously, which can be used to estimate
    earthquake magnitude rapidly.
    As regards the prediction of peak ground motions, we use two-step linear
    regression analysis to derive various parametric equations. The parameters
    include peak ground acceleration (PGA), peak ground velocity (PGV), 0.3 sec,
    1.0 sec, 3.0 sec spectral acceleration (Sa) and filtered PGA etc.. According to
    the earthquake early warning and rapid reporting stages respectively, we
    developed three algorithms creating “ShakeMaps” based on these predictive
    equations. In comparison with actual maps resulted from observed
    strong-motion data, the predictive results had high similarity, the correlation
    coefficients are almost above 0.8 and the average magnifications of grids are
    between 0.5 to 1.5.
    To combine the research results, and under the framework of real-time
    strong-motion observational network, we designed an earthquake early warning
    algorithm which is suitable for Taiwan Island. According to the experiment on
    7 magnitude-above-6.0 earthquakes took place after 2002, the averaged
    response times is within 15 sec. Except for the Chengkung earthquake of 2003,
    the processing time for inland earthquakes can be shorten beneath 10 sec
    further, and the radius of blind-zone is reduced to 30 km.

    摘要......................................................................................................................I Abstract............................................................................................................III 誌謝.................................................................................................................... V 目錄...................................................................................................................VI 圖目................................................................................................................VIII 表目................................................................................................................. XII 第一章、緒論.................................................................................................... 1 1.1 研究動機與目的................................................................................... 1 1.2 地震預警發展回顧............................................................................... 4 1.3 台灣即時強地動觀測系統................................................................... 9 1.4 研究內容............................................................................................. 13 第二章、預警原理與方法.............................................................................. 21 2.1 預警基本構想..................................................................................... 21 2.2 預警模式............................................................................................. 22 2.3 預警相關原理..................................................................................... 23 2.3.1 位置估算................................................................................... 23 2.3.2 規模估算................................................................................... 25 2.3.3 振動參數推估........................................................................... 27 2.4 台灣發展地震預警之討論................................................................. 28 第三章、地震發布參數之測報...................................................................... 36 3.1 地震發布參數..................................................................................... 36 3.2 全域即時強地動觀測網作業............................................................. 37 3.2.1 作業流程................................................................................... 37 3.2.2 測報效能評估........................................................................... 40 3.3 區域子網即時強地動觀測作業......................................................... 43 3.3.1 子網架構................................................................................... 43 3.3.2 作業流程................................................................................... 44 3.3.3 成效評估................................................................................... 44 3.4 P波在測報之應用............................................................................... 48 3.4.1 資料選取................................................................................... 48 3.4.2 資料處理................................................................................... 49 3.4.3 分析結果................................................................................... 51 第四章、地振動參數經驗預估模式之建立................................................. 77 4.1 地動參數經驗預估公式推導............................................................. 77 4.1.1 資料........................................................................................... 78 4.1.2 方法........................................................................................... 80 4.1.3 結果........................................................................................... 82 4.2 振動圖層之製作與評估..................................................................... 86 4.2.1 製作流程................................................................................... 86 4.2.2 結果評估................................................................................... 87 4.3 地動參數在防災作業之應用............................................................. 89 4.3.1 資料........................................................................................... 89 4.3.2 分析流程................................................................................... 90 4.3.3 結果........................................................................................... 90 第五章、地震預警架構及實例評估............................................................ 131 5.1 預警架構........................................................................................... 131 5.2 實例評估........................................................................................... 132 5.2.1 2002 年2 月12 日西林外海地震......................................... 132 5.2.2 2002 年3 月31 日花蓮外海地震......................................... 133 5.2.3 2002 年5 月15 日蘇澳地震.................................................. 134 5.2.4 2003 年6 月10 日紅葉外海地震......................................... 135 5.2.5 2003 年12 月10 日成功地震............................................... 135 5.2.6 2006 年4 月1 日台東地震.................................................... 136 5.2.7 2006 年4 月15 日台東地震.................................................. 137 5.2.8 討論......................................................................................... 137 5.3 預警訊息傳遞方式討論................................................................... 138 第六章、綜合討論與結論............................................................................ 151 6.1 綜合討論........................................................................................... 151 6.1.1 地震測報之討論..................................................................... 151 6.1.2 振動參數預估研究之討論.................................................... 152 6.1.3 地震預警應用之討論............................................................. 153 6.2 研究結果與結論............................................................................... 154 參考文獻........................................................................................................ 160 附錄A 本研究各類型地動參數場址因子空間分布圖.............................. 167 附錄B 研究期間發表文章........................................................................... 175 作者簡介........................................................................................................ 178

    中央氣象局,1996:強地動觀測第二期計畫-建置強震速報系統,共35
    頁。
    中央氣象局,2002:強地動觀測第三期計畫-發展強震即時警報系統,
    共101 頁。
    內政部,2004:震災災害防救業務計畫,共50 頁。
    王乾盈、李俊延、林金泉、呂佩玲,1998:使用頻譜參數分離法研究北
    台灣強地動PGA 放大值分布,台灣地區強地動觀測計畫研討會(三)
    論文摘要,93-103 頁。
    牟鍾香,2004:竹子湖強震站場址效應之探討,中央大學地球物理研究
    所碩士論文,共110 頁。
    辛在勤,1998:台灣地區地震預警之初探,氣象學報第42 卷,第2 期,
    118-134 頁。
    吳逸民、陳承俊、鍾仁光、辛在勤,1998:即時加速度型地震觀測網之
    波相到時自動撿拾系統,氣象學報第42 卷,第2 期,103-117 頁。
    吳逸民,1999:地震速報與預警系統之發展-台灣經驗,中央大學地球
    物理研究所博士論文,共152 頁。
    溫國樑、簡文郁、張毓文、黃怡陵,2004:地震動快速評估與近斷層區
    域位移之模擬,2004 年台灣活動斷層與地震災害研討會論文集,
    138-150 頁。
    陳榮裕,2005:探討地震發震構造之辨識與分布-以集集地震序列為
    例,中央大學地球物理研究所博士論文,共271 頁。
    張建興,2004:高密度地震資料分析及其用於台灣中部及東部孕震構造
    之研究,中央大學地球物理研究所博士論文,共156 頁。
    張毓文、王治國、簡文郁、溫國樑、羅俊雄,2002:早期地震災害潛勢
    評估,第九屆台灣地區地球物理研討會論文集,14-23 頁。
    蕭乃祺、呂佩玲、吳逸民、辛在勤,2000:嘉南速報子網在地震預警上
    之應用,海峽兩岸城市防震減災研討會(摘要),中國福州。
    蕭乃祺、吳逸民、辛在勤,2005a:台灣地震速報及預警系統之研發與應
    用,2005 台灣地震損失評估系統研討會論文集,1-21 頁。
    蕭乃祺、吳逸民、辛在勤,2005b:台灣地區地震速報系統之發展,氣象
    學報第45 卷,第4 期,1-15 頁。
    蕭乃祺、辛在勤、王乾盈,2006:台灣快速地動峰值振動圖層之製作,
    兩岸都會區防震與地震前兆研討會論文集,55-64 頁。
    關田康雄,1996:關於新的氣象廳震度階級(日文),JSEEP NEWS 147.
    Abrahamson, N. A., and W. J. Silva (1997). Empirical response spectral
    attenuation relations for shallow crustal earthquakes, Seism. Res. Lett. 68,94-127.
    Atikson, G. M. and D. M. Boore (1995). New ground motion relations for
    eastern north America, Bull. Seism. Soc. Am. 85, 17-30.
    Allen, R. M. and H. Kanamori (2003). The potential for earthquake early
    warning in Southern California, Science 300, 786-789.
    Allen, R. M. (2004). Rapid magnitude determination for earthquake early
    warning, in "The Many Facets of Seismic Risk" edited by G. Manfredi,
    M.R. Pecce, and A. Zollo, Universitadegli Studi di Napoli "Federico II",
    Napoli, Italy, 15-24.
    Bakun, W. H., F. G. Fischer, E. G. Jensen, and J. VanSchack (1994). Early
    warning system for aftershocks, Bull. Seism. Soc. Am. 84, 359-365.
    Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). Equations for estimating
    horizontal response spectra and peak acceleration from western North
    American earthquakes: a summary of recent work, Seism. Res. Lett. 68,
    128-153.
    Bose, M., M. Erdik, and F. Wenzel (2005). Development of a neural network
    based approach for EEW in Istanbul, Turkey, Earthquake Early Warning
    Workshop (Abstracts), 13-15 July 2005, Pasadena, California, U. S. A.
    Campbell, K. W. (1981). Near-source attenuation of peak horizontal
    acceleration, Bull. Seism. Soc. Am. 71, 2039-2070.
    Campbell, K. W. (1997). Empirical near-source attenuation relationships for
    horizontal and vertical components of peak ground acceleration, peak
    ground velocity, and pseudo-absolute response spectra, Seism. Res. Lett.
    68, 154-179.
    Castro, R. R., J. G. Anderson, and S. K. Singh (1990). Site response,
    attenuation and source spectra of S waves along the Guerrero, Mexico,
    subduction zone, Bull. Seism. Soc. Am. 80, 1481-1503.
    Chen, K. C. (2003). Strong ground motion and damage in the Taipei basin from
    the Moho reflected seismic waves during the March 31, 2002, Hualien,
    Taiwan earthquake, Geophys. Res. Lett. 30, doi:10.1029/2003GL017193.
    Chang, T. Y., F. Cotton, and J. Angelier (2001). Seismic Attenuation and Peak
    Ground Acceleration in Taiwan, Bull. Seism. Soc. Am. 91, 1229-1246.
    Chung, J. K., W. H. K. Lee, and T. C. Shin (1995). A prototype earthquake
    warning system in Taiwan: operation and results, IUGG XXI General
    Assembly (Abstracts), Week A, p A406.
    Cressie, N. A. C. (1990). The origins of Kriging, Mathemtical Geology 22,
    239-252.
    Diagourtas, D. and K. Makropoulos (2005). Towards an EEW system for Greece, Earthquake Early Warning Workshop (Abstracts), 13-15 July
    2005, Pasadena, California, U. S. A.
    Erdik, M. (2004). Istanbul earthquake early warning and rapid response system,
    Workshop on Seismic Early Warning for European Cities (Abstracts),
    23-25 September 2004, Napoli, Italy.
    Espinosa-Aranda, J. M., A. Jiménez, G. Ibarrola, F. Alcantar, A. Aguilar, M.
    Inostroza, and S. Maldonado (1995). Mexico City seismic alert
    system.,Seism, Res. Lett. 66, 42-53.
    Espinosa-Aranda, J. M., A. Jiménez, G. Ibarrola, F. Alcantar, A. Aguilar, M.
    Inostroza, S. Maldonado, and R. Higareda (2003). The seismic alert
    system in Mexico City and the school prevention program, in "Early
    Warning Systems for Natural Disaster Reduction", edited by J. Zschau
    and A. N. Kuppers, Springer, Berlin, 441-446.
    Hayama, T., S. Horiuchi, S. Tsukada, and Y. Fujinawa (2005). A national
    research project on earthquake early warning system and its applications,
    Earthquake Early Warning Workshop (Abstracts), 13-15 July 2005,
    Pasadena, California, U. S. A.
    Heaton, T. H. (1985). A model for a seismic computerized alert network,
    Science 228, 987-990.
    Hsiao, N. C., Y. M. Wu, T. C. Shin, and T. L. Teng (2003). Latest development
    of real-time strong-motion monitoring system in Taiwan, 2003 American
    Geophysical Union Fall Meeting (Abstracts), 8 - 12 December 2003
    (Monday-Friday), San Francisco, U.S.A.
    Hsiao, N. C., Y. M. Wu, T. C. Shin, and T. L. Teng (2004). The improvements
    on the real-time strong-motion monitoring capability in Taiwan,
    Programme proceeding of the Tenth Taiwan Symposium on Geophysics
    2004, 241-247.
    Hsiao, N. C., W. H. K. Lee, T. C. Shin, T L. Teng, and Y. M. Wu (2005).
    Earthquake rapid reporting and early warning systems at CWB in Taiwan,
    Earthquake Early Warning Workshop (Abstracts), 13-15 July 2005,
    Pasadena, California, U. S. A.
    Ionescu, C. and A. Marmureanu (2005). Rapid early warning system (REWS)
    for Bucharest and industrial facilities, Earthquake Early Warning
    Workshop (Abstracts), 13-15 July 2005, Pasadena, California, U. S. A.
    Joyner, W. B., and D. M. Boore (1981). Peak horizontal acceleration and
    velocity from strong-motion records including records from the 1979
    Imperial Valley, California, earthquake, Bull. Seism. Soc. Am. 71,
    2011-2038.
    Kamigaichi, O. (2004). JMA earthquake early warning, Journal of Japan
    Association for Earthquake Engineering, Vol.4, No.3 (special issue).
    Kanamori, H., E. Hauksson, and T. Heaton (1997). Real-time seismology and
    earthquake hazard mitigation, Nature 390, 461-464.
    Kanamori, H., P. Maechling, and E. Hauksson (1999). Continuous monitoring
    of ground-motion parameters, Bull. Seism. Soc. Am. 89, 311-316.
    Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation,
    Annu. Rev. Earth Planet. Sci. 33, 5.1-5.20.
    Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai (2001). Site classification
    of Taiwan free-field strong-motion stations, Bull. Seism. Soc. Am. 91,
    1283-1297.
    Lee, W. H. K. and J. C. Lahr (1975). HYPO71 (revised): A computer for
    determining hypocenter, magnitude, and first motion pattern of local
    earthquakes, U. S. Geol. Surv. Open-File Report 75-311, 116pp.
    Lee, W. H. K. (1992). Real-time seismic data acquisition, in “A course on:
    pc-based seismic networks” edited by W. H. K. Lee and D. A. Dodge, U.
    S. Geol. Surv. Open-File Report 92-441, 535pp.
    Lee, W. H. K., T. C. Shin, and T. L. Teng (1995). Design and implementation
    of earthquake warning systems in Taiwan, IUGG XXI General Assembly
    (Abstracts), Week A, p A406.
    Lee, W. H. K., T. C. Shin, K. W. Kuo, K. C. Chen, and C. F. Wu (2001). CWB
    free-field strong-motion data from the 21 September Chi-Chi, Taiwan,
    earthquake, Bull. Seism. Soc. Am. 91, 1370-1376.
    Lee, W. H. K. and J. M. Espinosa-Aranda (2002). Earthquake early-warning
    systems: current status and perspectives, in “Early warning systems for
    natural disaster reduction” edited by J. Zschau and A. N. Kuppers,
    Springer-Verlag Berlin Heidelberg, New York.
    Lee, W. H. K., K. F. Ma, T. L. Teng, and Y. M. Wu (2005). A proposed plan
    for integrating earthquake and tsunami warning at CWB in Taiwan,
    Earthquake Early Warning Workshop, 13-15 July 2005, Pasadena,
    California, U. S. A.
    Malagnini, L., R. B. Herrmann, and M. D. Bona (2000). Ground-motion
    scaling in the Apennines (Italy), Bull. Seism. Soc. Am. 90, 1062-1081.
    Nakamura, Y. (1988). On the urgent earthquake detection and alarm system
    (UrEDAS), Proc. Ninth World Conf. Earthq. Eng. 7, 673-678.
    Nakamura, Y. and B. E. Tucker (1988). Japan’s earthquake warning system:
    should it be imported to California?, Calif. Geol. 41(2), 33-40.
    Nakamura, Y. (1989). Earthquake alarm system for Japan Railways, Japanese Railway Engineering 109, 1-7.
    Nakamura, Y. (2004). The earthquake early warning system UrEDAS: today
    and tomorrow, Workshop on Seismic Early Warning for European Cities
    (Abstracts), 23-25 September 2004, Napoli, Italy.
    Nakamura, Y. (2005a). Observational Results of UrEDAS at Pasadena and
    other locations, Earthquake Early Warning Workshop (Abstracts), 13-15
    July 2005, Pasadena, California, U. S. A.
    Nakamura, Y. (2005b). Performance of an early warning system, Compact
    UrEDAS, during destruct shaking, Earthquake Early Warning Workshop
    (Abstracts), 13-15 July 2005, Pasadena, California, U. S. A.
    National Office of Statistics (2000). Summary of important population statistics
    in 1999 (in Chinese), 921 Earthquake Post-Disaster Recovery
    Commission, http://www.921erc.gov.tw.
    National Office of Statistics (2001). Important statistics about the Chi-Chi
    earthquake disaster (in Chinese), 921 Earthquake Post-Disaster Recovery
    Commission, http://www.921erc.gov.tw.
    Odaka, T., K. Ashiya, S. Tsukada, S. Sato, K. Ohtake, and D. Nozaka (2003).
    A new method of quickly estimating epicentral distance and magnitude
    from a single seismic record, Bull. Seism. Soc. Am. 93, 526-532.
    Oliveira, C. S. (2004). Seismic early warning: state of the art in Portugal,
    Workshop on Seismic Early Warning for European Cities (Abstracts),
    23-25 September 2004, Napoli, Italy.
    Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and
    excitation of three-component ground motion in Southern California, Bull.
    Seism. Soc. Am. 89, 888-902.
    Richter, C. F. (1935). An instrumental earthquake magnitude scale, Bull. Seism.
    Soc. Am. 25, 1-32.
    Rydelek, P. and J. Pujol (2004). Real-time seismic warning with a two-station
    subarray, Bull. Seism. Soc. Am 94, 1546-1550.
    Sadigh, K., C. Y. Chang, J. A. Egan, F. Makdisi, and R. R. Youngs (1997).
    Attenuation relationships for shallow crustal earthquakes based on
    California strong motion data, Seism. Res. Lett. 68, 180-189.
    Sambridge, M. (1999). Geophysical inversion with a Neighbourhood
    Algorithm- I. searching a parameter space. Geophys. J. Int. 138, 479-494.
    Shakal, A. F., M. J. Huang, and V. M. Graizer (2003). Strong-Motion data
    processing, in “International handbook of earthquake and engineering
    seismology, volume 81B” edited by W. H. K. Lee, H. Kanamori, P. C.
    Jennings, and C. Kisslinger, Academic Press, 967-981.
    Shin, T. C. (1993). The calculation of local magnitude from the simulated
    Wood-Anderson seismograms of the short-period seismograms, TAO 4,
    155-170.
    Shin, T. C., Y. B. Tsai, and Y. M. Wu (1996). Rapid response of large
    earthquakes in Taiwan using a realtime telemetered network of digitial
    accelerographs, 11th World Conf. Earthq. Engin., Paper No. 2137,
    Elsevier, Amsterdam.
    Shyu , J. B. H., K. Sieh, Y. G. Chen, and C. S. Liu (2005). The neotectonic
    architecture of Taiwan and its implications for future large earthquakes, J.
    Geophys. Res. 110, B08402, doi:10.12029/2004JB003251.
    Tsai, Y. B., T. M. Yu, H. L. Chao, and C. P. Lee (2001). Spatial distribution
    and age dependence of human-fatality rates from the Chi-Chi, Taiwan,
    Earthquake of 21 September 1999, Bull. Seism. Soc. Am. 91, 1298-1309.
    United States Geological Survey (1998). A plan for implementing a real-time
    seismic hazard warning system - A report to congress required by public
    law 105-47, 33p, March 27, 1998, USA.
    Wald, D. J., V. Quitoriano, T. H. Heaton, H. Kanamori, C. W. Scrivner, and C.
    B. Worden (1999a). TriNet “ShakeMaps”: Rapid generation of peak
    ground motion and intensity maps for earthquake in Southern California,
    Earthquake Spectra 15, No. 3, 537-555.
    Wald, D. J., V. Quitoriano, T. H. Heaton, H. Kanamori (1999b). Relationships
    between peak ground acceleration, peak ground velocity and Modified
    Mercalli Intensity in California, Earthquake Spectra 15, No. 3, 557-564.
    Wang, C. Y. and R. B. Herrmann (1980). A numerical study of P-, SV-, and
    SH-wave generation in a plane layered medium, Bull. Seism. Soc. Am 70,
    1015-1036.
    Wenzel, F. and G. Marmureanu (2005). An earthquake early system for
    Bucharest, Earthquake Early Warning Workshop (Abstracts), 13-15 July
    2005, Pasadena, California, U. S. A.
    Wu, Y. M., C. C. Chen, T. C. Shin, Y. B. Tsai, W. H. K. Lee, and T. L. Teng
    (1997). Taiwan Rapid Earthquake Information Release System, Seism.
    Res. Lett., 68, 931-943.
    Wu, Y. M., T. C. Shin, and Y. B. Tsai (1998). Quick and reliable determination
    of magnitude for seismic early warning, Bull. Seism. Soc. Am. 88,
    1254-1259.
    Wu, Y. M., J. K. Chung, T. C. Shin, N. C. Hsiao, Y. B. Tsai, W. H. K. Lee, and
    T. L. Teng (1999). Development of an integrated seismic early warning
    system in Taiwan - case for the Hualien area earthquakes, TAO 10,719-736.
    Wu, Y. M., T. C. Shin, and C. H. Chang (2001). Near realtime mapping of
    peak ground acceleration and peak ground velocity following a strong
    earthquake, Bull. Seism. Soc. Am 91, 1218-1228.
    Wu, Y. M. and T. L. Teng (2002). A virtual subnetwork approach to
    earthquake early warning, Bull. Seism. Soc. Am 92, 2008-2018.
    Wu, Y. M., C. H. Chang, N. C. Hsiao, and F. T. Wu (2003). Relocation of the
    1998 Rueyli, Taiwan, earthquake sequence using three-dimensions
    velocity structure with stations corrections, TAO 14, 421-430.
    Wu, Y. M., N. C. Hsiao, and T. L. Teng (2004). Relationships between strong
    ground motion peak values and seismic losses during the 1999 Chi-Chi,
    Taiwan earthquake, Natural Hazards 32, 357-373.
    Wu, Y. M. and H. Kanamori (2005). Experiment on an onsite early warning
    method for the Taiwan early warning system, Bull. Seism. Soc. Am. 95,
    347-353.
    Wu, Y. M. and L. Zhao (2006). Magnitude estimation using the first three
    seconds P-wave amplitude in earthquake eearly warning, Geophys. Res.
    Lett. 33, L16312, doi: 10.1029/2006GL026871.
    Yamada, M. (2007). Early warning for earthquakes with large rupture
    dimension, PhD thesis, California Institute of Technology, 167pp.
    Zollo, A., G. Iannaccone, and G. Manfredi (2004). Development and
    experimentation of a prototype system for seismic early warning
    applications in Campania region (Southern Italy), Workshop on Seismic
    Early Warning for European Cities (Abstracts), 23-25 September 2004,
    Napoli, Italy.

    QR CODE
    :::