跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃健峯
Jian-Fong Huang
論文名稱: 鹿林廣角望遠鏡 (LWT):追蹤近地天體的自動化望遠鏡
Lulin Widefield Telescope (LWT): a Robotic Telescope for the Near-Earth Object Follow-up Observation
指導教授: 饒兆聰
Chow-Choong Ngeow
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 106
中文關鍵詞: 鹿林天文台鹿林廣角望遠鏡近地天體望遠鏡系統測試自動化望遠鏡
外文關鍵詞: Lulin Observatory, Lulin Widefield Telescope (LWT), Near-Earth Objects (NEOs), System testing, Robotic telescope
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為人們對宇宙無止盡的好奇心與科技的快速進展,全球的地面望遠鏡建造得愈來愈大。由於成像系統的進步,如今我們可以觀測到更暗的天體,也就是天體可以在離地球更遠處被偵測到。為了避免具毀滅性的小行星撞擊地球而導致人類文明的滅亡,我們需要持續地監測可能威脅地球的潛在危險天體 (Potentially Hazardous Object)。然而,潛在危險天體的運行軌道需要先被確認與預測,以提供人類足夠的時間面對將臨的危機。
    此論文研究目標為使一望遠鏡能夠對列於近地天體確認頁 (Near-Earth Object Confirmation Page,由隸屬於國際天文學聯合會 (International Astronomical Union) 的 小行星中心 (Minor Planet Center) 管理) \cite{aNEOCP} \cite{oNEOCP} 的待確認近地天體 (Near-Earth Objects) 做全自動的追蹤觀測,並代表台灣成為國際小行星預警網的一份子。
    於民國一百零六年十月,我們在台灣的鹿林天文台安裝鹿林廣角望遠鏡 (Lulin Widefield Telescope,簡稱 LWT),為一台 Officina Stellare 公司製造且型號為 RiFast 400 \cite{telescope} 的 40 公分口徑望遠鏡,專門做近地天體的追蹤觀測。LWT 配有一台 Finger Lakes Instrumentation 公司製造且型號為 ProLine \cite{camera} PL16803 的 CCD 相機,提供視野約 2 平方度 (1.4$^{\circ}$ $\times$ 1.4$^{\circ}$),適合追蹤未確定軌道的近地天體。
    我們將詳細介紹 LWT 望遠鏡系統的軟硬體、相機的各種特性如增益值、讀出雜訊、暗電流和線性範圍、望遠鏡地點的品質如天空背景亮度和 \textit{B} 與 \textit{V} 波段的極限星等、自動化運作的設計:從追蹤觀測到資料分析與傳送近地天體的天體測量觀測報告給小行星中心,以及未來的系統升級或擴展研究目標到時序天文學的其他領域的未來計畫。


    Thanks to human beings' endless curiosity about the universe and advances in technology, ground-based telescopes around the world are constructed larger and larger. As a result of the imaging system has been significantly improved, we nowadays are able to observe much fainter celestial objects, i.e. the objects can be discovered at much longer distance from Earth. In order to avoid the demise of human civilization owing to devastating asteroids, we need to keep monitoring the potentially hazardous object (PHO) that may threaten Earth. However, the prerequisite is to confirm and predict their orbits so as for sufficient time to prepare for the incoming risks.
    The goal of this paper is to make a telescope automatically follow up the unconfirmed Near-Earth Objects (NEOs) in the Near-Earth Object Confirmation Page (NEOCP) \cite{aNEOCP} \cite{oNEOCP} of the Minor Planet Center (MPC) which belongs to the International Astronomical Union (IAU) and participate in the global asteroid warning network on behalf of Taiwan.
    We introduced the Lulin Widefield Telescope (LWT), a \SI{0.40}{\meter} Officina Stellare 400 RiFast Astrograph \cite{telescope} installed at the Lulin Observatory, Taiwan, in October 2017, to focus on the follow-up observation of the NEOs. The telescope is equipped with a FLI ProLine \cite{camera} PL16803 Monochrome CCD camera, which offers a field of view of about 2 degree squared (1.4$^{\circ}$ $\times$ 1.4$^{\circ}$) especially for tracking the NEOs with uncertain orbits.
    We describe in detail about the system of the LWT including hardwares and softwares, the characteristics of the camera such as gain, readout noise, dark current and linearity, the quality of site including sky background brightness and limiting magnitudes for \textit{B} and \textit{V} bands, the design of automatic operation ranging from observation to analysis, sending the astrometric observation report of the recovered NEOs to the MPC, and the future plan for upgrading the system or expanding research interests to other areas of time-domain astronomy.

    摘要 i ABSTRACT ii 致謝 iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 INTRODUCTION 1 1.1 Lulin Widefield Telescope 1 1.1.1 Location 1 1.1.2 Structure 4 1.2 Research Project 5 1.2.1 Inspiration 5 1.2.2 Present & Future 6 1.3 Chapter Arrangement 7 Chapter 2 CCD PERFORMANCE 9 2.1 The Basic CCD Testing 11 2.2 The Advanced CCD Testing 13 Chapter 3 TELESCOPE PERFORMANCE 35 Chapter 4 OBSERVATORY CODE 43 4.1 Introduction 43 4.2 Procedure 44 4.3 Conclusion 47 Chapter 5 ROBOTIC TELESCOPE 49 5.1 System Architecture 49 5.2 Design Philosophy 50 5.3 Third-Party Software 51 5.4 Automatic Observation 55 5.5 Automatic Analysis 57 Chapter 6 RESULTS AND DISCUSSION 63 6.1 Instrument Testing 63 6.2 NEO Follow-up Program 64 Chapter 7 CONCLUSIONS 67 7.1 Lessons Learned 67 7.2 Enhancements & Future Work 68 7.3 Conclusion 70 APPENDIX 71 A1 Chronology 71 A2 Plots of Estimating the Limiting Magnitude 73 A3 2019 Annual Meeting of the Physical Society of Taiwan 81 REFERENCES 83

    B. G. Marsden and G. V. Williams, “The NEO confirmation page,”, vol. 46, pp. 299–302, Feb. 1998.
    DOI: 10.1016/S0032-0633(96)00153-5.
    F. R. Chromey and D. A. Hasselbacher, “The Flat Sky: Calibration and Background Uniformity in
    Wide Field Astronomical Images,”, vol. 108, p. 944, Oct. 1996. DOI: 10.1086/133817.
    S. Tulloch, “CCD Camera Calibration and Testing Using Compact LED Light Sources,” in Optical
    Detectors for Astronomy, J. Beletic and P. Amico, Eds., ser. Astrophysics and Space Science Library,
    vol. 228, 1998, p. 299. DOI: 10.1007/978-94-011-5262-4_46.
    O. Vince, “Astronomical Station Vidojevica: In Situ Test of the Alta Apogee U42 CCD Camera,”
    Serbian Astronomical Journal, vol. 185, pp. 65–74, Dec. 2012. DOI: 10.2298/SAJ1285065V.
    A.-Y. Zhou, X.-J. Jiang, Y.-P. Zhang, and J.-Y. Wei, “MiCPhot: A prime-focus multicolor CCD photometer
    on the 85-cm Telescope,” Research in Astronomy and Astrophysics, vol. 9, pp. 349–366, Mar.
    2009. DOI: 10.1088/1674-4527/9/3/010.
    M. Im, C. Choi, and K. Kim, “Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope
    for Education and Research at Seoul National University,” Journal of Korean Astronomical
    Society, vol. 48, pp. 207–212, Aug. 2015. DOI: 10.5303/JKAS.2015.48.4.207. arXiv: 1510.03161
    [astro-ph.IM].
    S. D. J. Gwyn, “MegaPipe: The MegaCam Image Stacking Pipeline at the Canadian Astronomical
    Data Centre,”, vol. 120, p. 212, Feb. 2008. DOI: 10.1086/526794. arXiv: 0710.0370.
    W. E. Harris, “A comment on image detection and the definition of limiting magnitude,”, vol. 102,
    pp. 949–953, Aug. 1990. DOI: 10.1086/132720.
    D. Kinoshita, C.-W. Chen, H.-C. Lin, Z.-Y. Lin, K.-Y. Huang, Y.-S. Chang, and W.-P. Chen, “Characteristics
    and Performance of the CCD Photometric System at Lulin Observatory,”, vol. 5, pp. 315–
    326, Jun. 2005. DOI: 10.1088/1009-9271/5/3/011.
    C. Choi and M. Im, “Seoul National University Camera II (SNUCAM-II): The New SED Camera
    for the Lee Sang Gak Telescope (LSGT),” Journal of Korean Astronomical Society, vol. 50, pp. 71–78,
    Jun. 2017. DOI: 10.5303/JKAS.2017.50.3.71. arXiv: 1707.08745 [astro-ph.IM].
    C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A.-C. Levasseur-Regourd, I.
    Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg,
    and A. N. Witt, “The 1997 reference of diffuse night sky brightness,”, vol. 127, pp. 1–99, Jan.
    1998. DOI: 10.1051/aas:1998105.
    C. W. Loon, M. Z. Zainuddin, N. Ahmad, M. S. Shukor, and M. R. Tahar, “Acquirement of the
    observatory code of Langkawi National Observatory,” in American Institute of Physics Conference
    Series, ser. American Institute of Physics Conference Series, vol. 1657, Apr. 2015, p. 050 006. DOI:
    10.1063/1.4915186.
    R. R. Laher, J. Surace, C. J. Grillmair, E. O. Ofek, D. Levitan, B. Sesar, J. C. van Eyken, N. M. Law,
    G. Helou, N. Hamam, F. J. Masci, S. Mattingly, E. Jackson, E. Hacopeans, W. Mi, S. Groom, H.
    Teplitz, V. Desai, D. Hale, R. Smith, R. Walters, R. Quimby, M. Kasliwal, A. Horesh, E. Bellm, T.
    Barlow, A. Waszczak, T. A. Prince, and S. R. Kulkarni, “IPAC Image Processing and Data Archiving
    for the Palomar Transient Factory,”, vol. 126, p. 674, Jul. 2014. DOI: 10.1086/677351. arXiv:
    1404.1953 [astro-ph.IM].
    F. J. Masci, R. R. Laher, U. D. Rebbapragada, G. B. Doran, A. A. Miller, E. Bellm, M. Kasliwal, E. O.
    Ofek, J. Surace, D. L. Shupe, C. J. Grillmair, E. Jackson, T. Barlow, L. Yan, Y. Cao, S. B. Cenko, L. J.
    Storrie-Lombardi, G. Helou, T. A. Prince, and S. R. Kulkarni, “The IPAC Image Subtraction and
    Discovery Pipeline for the Intermediate Palomar Transient Factory,”, vol. 129, no. 1, p. 014 002,
    Jan. 2017. DOI: 10.1088/1538-3873/129/971/014002. arXiv: 1608.01733 [astro-ph.IM].
    J.-F. Huang, Automation programs for the near-earth object follow-up project of lulin widefield telescope, https:
    / / github . com / z94624 / LWT - AutomationProject, 2019. DOI: 10 . 5281 / zenodo . 2600024.
    [Online]. Available: https://doi.org/10.5281/zenodo.2600024.
    A. Waszczak, T. A. Prince, R. Laher, F. Masci, B. Bue, U. Rebbapragada, T. Barlow, J. Surace, G.
    Helou, and S. Kulkarni, “Small Near-Earth Asteroids in the Palomar Transient Factory Survey: A
    Real-Time Streak-detection System,”, vol. 129, no. 3, p. 034 402, Mar. 2017. DOI: 10.1088/1538-
    3873/129/973/034402. arXiv: 1609.08018 [astro-ph.EP].
    M. Shao, B. Nemati, C. Zhai, S. G. Turyshev, J. Sandhu, G. Hallinan, and L. K. Harding, “Finding
    Very Small Near-Earth Asteroids using Synthetic Tracking,”, vol. 782, 1, p. 1, Feb. 2014. DOI: 10.
    1088/0004-637X/782/1/1. arXiv: 1309.3248 [astro-ph.IM].
    W. Fraser, M. Alexandersen, M. E. Schwamb, M. Marsset, R. E. Pike, J. J. Kavelaars, M. T. Bannister,
    S. Benecchi, and A. Delsanti, “TRIPPy: Trailed Image Photometry in Python,”, vol. 151, 158,
    p. 158, Jun. 2016. DOI: 10.3847/0004-6256/151/6/158. arXiv: 1604.00031 [astro-ph.IM].
    W. Fraser and M. Alexandersen, Trippy: Trailed image photometry in python, Mar. 2016. DOI: 10 .
    5281/zenodo.48694. [Online]. Available: https://doi.org/10.5281/zenodo.48694.
    C. A. Pilachowski, J. L. Africano, B. D. Goodrich, and W. S. Binkert, “Sky brightness at the Kitt
    Peak National Observatory,”, vol. 101, pp. 707–712, Aug. 1989. DOI: 10.1086/132494.
    C. R. Benn and S. L. Ellison, “Brightness of the night sky over La Palma,”, vol. 42, pp. 503–507, Nov.
    1998. DOI: 10.1016/S1387-6473(98)00062-1. eprint: astro-ph/9909153.
    K. Krisciunas, “Optical Night-Sky Brightness at Mauna Kea over the Course of a Complete Sunspot
    Cycle,”, vol. 109, pp. 1181–1188, Oct. 1997. DOI: 10.1086/133993. eprint: astro-ph/9706111.
    F. Patat, “UBVRI night sky brightness during sunspot maximum at ESO-Paranal,”, vol. 400, pp. 1183–
    1198, Mar. 2003. DOI: 10.1051/0004-6361:20030030. eprint: astro-ph/0301115.

    QR CODE
    :::