| 研究生: |
呂佳明 Chia-Ming Lu |
|---|---|
| 論文名稱: |
燃煤及垃圾焚化程序之PM2.5與PAHs排放特性研究 Characteristics of PM2.5 and polycyclic aromatic hydrocarbons emitted from coal combustion and waste incineration processes |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 空氣污染 、PM2.5 、多環芳香烴 、燃煤程序 、焚化爐 |
| 外文關鍵詞: | Air pollution, PM2.5, PAHs, Coal combustion, MWI |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內外研究顯示空氣中細懸浮微粒會導致循環系統和呼吸系統方面的健康危害,尤其是粒徑小於2.5 微米的細微粒(PM2.5)被人體吸入後會深入支氣管,干擾肺部的氣體交換,超細微粒甚至可通過支氣管和肺泡進入血液,另外多種有害空氣污染物如多環芳香碳氫化合物及其他空氣污染物等,皆可能附著於細懸浮微粒上,隨血液進入人體循環,對人體健康造成顯著危害。為進一步維護民眾健康及生活環境品質,針對環境細懸浮微粒中 PAHs 及其他空氣污染物分佈特性進行調查實屬必要。本研究已針對本土大型燃煤電廠(A廠)、小型燃煤鍋爐(B廠)及都市廢棄物焚化爐(C廠)完成PM2.5及PAHs之檢測分析作業。A廠煙囪排放之FPM2.5 (0.45 mg/Nm3)明顯低於B廠(1.91 mg/Nm3)之排放,C廠煙囪排放之FPM2.5濃度1.93 mg/Nm3,數據結果得知A廠BH+SWFGD對於FPM2.5去除效率高達99.83%。
PM部分,A廠袋式集塵器(BH)入口濃度高達4,923 mg/Nm3,FPM2.5僅占PM的5.38%,BH+SWFGD對於PM之去除效率達99.98%,而B廠於煙囪檢測之PM濃度為2.55 mg/Nm3,C廠ESP入口、SCR入口及煙囪PM濃度分別為2248、2.47及2 mg/Nm3,C廠之ESP+WS對PM之去除效率達99.91%,本研究結果顯示ABC三廠之CPM濃度均大於FPM2.5及PM濃度,A廠之BH+SWFGD對CPM之去除效率僅38.3%。金屬元素部份,B廠FPM2.5所分析之金屬元素中以Na、Ca、Mg及Fe占比較高,而B廠FPM之水溶性離子以SO42- 佔比最高(606-1279 μg/m3),其次則為NH4+(191 – 475 μg/m3)。 A廠煙囪排氣24種gas-phase PAHs濃度介於6.93~5297 ng/Nm3,solid-phase PAHs則介於0.40-9.45 ng/Nm3,BH inlet之24種gas-phase PAHs 濃度介於151-50239 ng/Nm3,solid-phase PAHs濃度介於39.1-832 ng/Nm3,而B廠PAHs亦主要分佈於氣相,24種 gas-phase PAHs 濃度遠高於 solid-phase PAHs。A廠BH+SWFGD對於固相PAHs之去除效率平均達98.59%,但對於氣相PAHs表現較差,C廠ESP入口之氣固相PAHs總濃度分別為40862及145 ng/Nm3,SCR入口分別為6.11及7882 ng/Nm3,而煙囪排氣濃度僅3.6及1560 ng/Nm3,數據顯示ESP+WS對於24種PAHs去除效率介於30.35-98.43%,而SCR的去除效率則介於30.87-88.28%。
It is well known that particulate matter (especially PM2.5) causes adverse effects on human health. Besides, toxic air pollutants such as polycyclic aromatic hydrocarbons (PAHs) may be attached to particulate matter. In this study sampling and analysis of PM and PAHs emitted from one coal-fired power plant (plant A), one coal-fired boiler (plant B) and one MWI (plant C) are conducted. The concentration of filterable particulate matter (FPM2.5) emitted from plant A (0.45 mg/Nm3) is significantly lower than that from plant B (1.91 mg/Nm3). The concentration of plant C is 1.93 mg/Nm3. In plant A, the removal efficiency of FPM2.5 achieved with the APCD (baghouse and seawater flue gas desulfurization) reaches 99.83%. The PM concentration measured at BH inlet of plant A is 4,923 mg/Nm3 and FPM2.5 accounts for only 5.38% of PM. the removal efficiency of PM achieved with the APCD (baghouse and seawater flue gas desulfurization) reaches 99.98%. For plant B, PM concentration of stack gas is 2.55 mg/Nm3 and FPM2.5 accounts for 75% of PM. Moreover, concentration of CPM is higher than FPM2.5 and PM in three plants. It’s worth noting that the removal efficiency of CPM achieved with BH+SWFGD in plant A is 38.3%, which is significantly lower than that of FPM2.5 (99.83%) and PM (99.98%). Besides, 24 gas-phase PAHs and solid-phase PAHs concentrations emitted from plant A are 20.3-34.0 μg/Nm3 and 111-137 ng/Nm3, respectively. The removal efficiency of BH+SWFGD for solid-phase PAHs is 98.59%. but for gas-phase PAHs is lower than solid-phase. Relatively, plant B emits more gas-phase PAHs (35-50 μg/Nm3) and solid-phase PAHs (156-285 μg/Nm3) if compared with plant A. Toxic PAHs are dominant in gas phase for three plants. This study also evaluates the emission factors of PAHs and FPM2.5 for both plants. For plant A, the average emission factors of PAHs and FPM2.5 are 316 μg/kg-coal, 5.25 μg/kg-coal, respectively. For plant B, average emission factors of PAHs and PM2.5 are 382 μg/kg-coal and 16 μg/kg-coal, respectively. As a result, plant A emits less FPM2.5 and PAHs due to higher combustion efficiency and better air pollution control devices. The concentrations of gas and solid phase PAHs at the ESP inlet of Plant C are 40862 and 145 ng/Nm3, respectively, and the SCR inlets are 6.11 and 7882 ng/Nm3, respectively. The concentration of stack are 3.6 and 1560 ng/Nm3. The removal efficiency of PAHs achieved with ESP+WS is between 30.35-98.43%, and that achieved with SCR is between 30.87-88.28%.
Aceves, M., Grimalt, J. O. (1993). Seasonally dependent size distribution of aliphatic and polycylic aroatic hydrocarbons in urban aerosals from densely populated areas. Environmental Science and Technology, 27(13), 2896-2908.
Albuquerque, M., Coutinho, M., Borrego, C. (2016). Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. Science of the Total Environment, 543, 439-448.
Anna-Karin, H. (1990). Control of nitrogen oxide emissions from coal combustion. International Journal of Energy Research, 14(8), 813-820.
Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263-1270.
Besombes, J. L., Maitre, A., Patissier, O., Marchand, N., Chevron, N., Stoklov, M., & Masclet, P. (2001). Particulate PAHs observed in the surrounding of a municipal incinerator. Atmospheric Environment, 35(35), 6093-6104.
Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1-2), 85-97.
Buseck, P. R., & Adachi, K. (2008). Nanoparticles in the Atmosphere. Elements, 4(6), 389-394.
Callen, M. S., Lopez, J. M., Iturmendi, A., & Mastral, A. M. (2013). Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environmental Pollution, 183,
Chen, H. Y., Teng, Y. G., & Wang, J. S. (2012). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Science of the Total Environment, 414, 293-300.
Chen, S. J., Hsieh, L. T., & Chiu, S. C. (2003). Characteristics of the PAH emissions from the incineration of livestock wastes with/without APCD. Environment International, 28(7), 659-668.
Chen, Y. C., Chiang, H. C., Hsu, C. Y., Yang, T. T., Lin, T. Y., Chen, M. J., Wu, Y. S. (2016). Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution, 218, 372-382.
Chow, J., Fairley, D., Watson, J., de Mandel, R., Fujita, E. M., Lowenthal, D. H., Cordova, J. (1995). Source Apportionment of Wintertime PM 10 at San Jose, Calif (Vol. 21).
Coleman, P. J., Lee, R. G. M., Alcock, R. E., & Jones, K. C. (1997). Observations on PAH, PCB, and PCDD/F trends in UK urban air, 1991-1995. Environmental Science & Technology, 31(7), 2120-2124.
Ehrlich, C., Noll, G., Kalkoff, W. D., Baumbach, G., & Dreiseidler, A. (2007). PM10, PM2.5 and PM1.0 - Emissions from industrial plants - Results from measurement programmes in Germany. Atmospheric Environment, 41(29), 6236-6254.
Gao, B., Wang, X. M., Zhao, X. Y., Ding, X., Fu, X. X., Zhang, Y. L., Guo, H. (2015). Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning. Atmospheric Environment, 103, 114-120.
Gigliotti, C. L., Totten, L. A., Offenberg, J. H., Dachs, J., Reinfelder, J. R., Nelson, E. D., Eisenreich, S. J. (2005). Atmospheric concentrations and deposition of polycyclic aromatic hydrocarbons to the Mid-Atlantic East Coast Region. Environmental Science & Technology, 39(15), 5550-5559.
Goodarzi, F. (2006). The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel, 85(4), 425-433.
Harrison, R. M., Smith, D. J. T., Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30(3), 825-832.
Hinds, W. (1982). Aerosol Technology-properties, behavior, and measurement of airborne particles", John Wiley and Sons (Vol. 31).
Ho, K. F., Lee, S. C., Chiu, G. M. Y. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36(1), 57-65.
Hsu, W. T., Liu, M. C., Hung, P. C., Chang, S. H., Chang, M. B. (2016). PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials, 318, 32-40.
Huynh, C. K., Vu Duc, T., Schwab, C., Rollier, H. (1984). In-stack dilution technique for the sampling of polycyclic organic compounds. Application to effluents of a domestic waste incineration plant. Atmospheric Environment (1967), 18(2), 255-259.
Jeong, U., Lee, H., Kim, J., Kim, W., Hong, H., Song, C. K. (2013). Determination of the inter-annual and spatial characteristics of the contribution of long-range transport to SO2 levels in Seoul between 2001 and 2010 based on conditional potential source contribution function (CPSCF). Atmospheric Environment, 70, 307-317.
Kawamoto, K., Miyata, H. (2014). Dioxin formation and control in a gasification–melting plant. Environ. Sci. Pollut. Res., 1-8.
Keller, C. D., Bidleman, T. F. (1984). Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment, 18(4), 837-845.
Khalili, N. R., Scheff, P. A., Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline-engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmospheric Environment, 106, 178-190.
Kong, S. F., Shi, J. W., Lu, B., Qiu, W. G., Zhang, B. S., Peng, Y., Bai, Z. P. (2011). Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmospheric Environment, 45(23), 3777-3785.
Kulkarni, P., Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785-2790.
Kume, K., Ohura, T., Noda, T., Amagai, T., Fusaya, M. (2007). Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. Journal of Hazardous Materials, 144(1-2), 513-521.
Lai, Y. C., Tsai, C. H., Chen, Y. L., Chang-Chien, G. P. (2017). Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung, Taiwan. Aerosol and Air Quality Research, 17(3), 776-787.
Lee, W.-J., Liow, M.-C., Tsai, P.-J., Hsieh, L.-T. (2002). Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmospheric Environment, 36(5), 781-790.
Li, C.-T., Mi, H.-H., Lee, W.-J., You, W.-C., Wang, Y.-F. (1999). PAH emission from the industrial boilers. Journal of Hazardous Materials, 69(1), 1-11.
Li, W., Wang, C., Wang, H. Q. J., Chen, J. W., Shen, H. Z., Shen, G. F., Tao, S. (2014). Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China. Environmental Pollution, 192, 83-90.
Liang, C.-J., Liu, Y.-S., Liang, J.-J. (2017). PCDD/Fs and PAHs compositions and source reconciliations in the basin area of central Taiwan. Sustainable Environment Research, 27(2), 77-86.
Louis A. Corio , J. S. (2002). In-stack condensible particulate matter measurements and issues. Fuel and Energy Abstracts, 43(1), 41.
Maguhn, J., Karg, E., Kettrup, A., Zimmermann, R. (2003). On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: Effects of dynamic process control measures and emission reduction devices. Environmental Science and Technology, 37(20), 4761-4770.
Mandalakis, M., Tsapakis, M., Tsoga, A., Stephanou, E. G. (2002). Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmospheric Environment, 36(25), 4023-4035.
Mishra, N., Ayoko, G. A., Morawska, L. (2016). Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment. Environmental Pollution, 208, 110-117.
Morisaki, H., Nakamura, S., Tang, N., Toriba, A., Hayakawa, K. (2016). Benzo c fluorene in Urban Air: HPLC Determination and Mutagenic Contribution Relative to Benzo a pyrene. Analytical Sciences, 32(2), 233-236.
Nesnow, S., Mass, M. J., Ross, J. A., Galati, A. J., Lambert, G. R., Gennings, C., .Stoner, G. D. (1998). Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons. Environmental Health Perspectives, 106, 1337-1346.
Nikolaou, K., Masclet, P., Mouvier, G. (1984). Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere — A critical review. Science of the Total Environment, 32(2), 103-132.
Nisbet, I. C. T., LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Pandey, P. K., Patel, K. S., Lenicek, J. (1999). Polycyclic aromatic hydrocarbons: Need for assessment of health risks in India Study of an urban-industrial location in India. Environmental Monitoring and Assessment, 59(3), 287-319.
Paul S. Farber, D. G. S. (2005) Reducing Acid Mist Emissions from Coal-fired Power Plants.
Pei, B. (2015). Determination and Emission of Condensable Particulate Matter from Coal-fired Power Plants. 36(5), 1544-1549.
Ravindra, K., Bencs, L., Wauters, E., de Hoog, J., Deutsch, F., Roekens, E., Van Grieken, R. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40(4), 771-785.
Ravindra, K., Sokhi, R., Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T. (2001). Measurement of Emissions from Air Pollution Sources. 3. C1−C29 Organic Compounds from Fireplace Combustion of Wood. Environmental Science & Technology, 35(9), 1716-1728.
Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment (1967), 21(10), 2247-2259.
Simcik, M. F., Eisenreich, S. J., Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30), 5071-5079.
Singh, R., Shukla, A. (2014). A review on methods of flue gas cleaning from combustion of biomass. Renewable and Sustainable Energy Reviews, 29, 854-864.
Sjogren, M., Ehrenberg, L., Rannug, U. (1996). Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 358(1), 97-112.
Stohl, A. (1996). Trajectory statistics - A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 30(4), 579-587.
Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Kavouras, I. G., Koutrakis, P., Oyola, P., von Baer, D. (2002). The composition and sources of PM2.5 organic aerosol in two urban areas of Chile. Atmospheric Environment, 36(23), 3851-3863.
Van Caneghem, J., Block, C., Van Brecht, A., Wauters, G., Vandecasteele, C. (2010). Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere, 78(6), 701-708.
Wang, R. W., Liu, G. J., Zhang, J. M. (2015). Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs. Science of the Total Environment, 538, 180-190.
Wang, X. T., Miao, Y., Zhang, Y., Li, Y. C., Wu, M. H., Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80-89.
Wu, D., Wang, Z. S., Chen, J. H., Kong, S. F., Fu, X., Deng, H. B., Wu, G. (2014). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research, 149, 217-229.
Wu, Y., Yang, L., Zheng, X., Zhang, S. J., Song, S. J., Li, J. Q., Hao, J. M. (2014). Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Science of the Total Environment, 470, 76-83.
Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J., Chi, T.-W. (2002). Profiles of PAH emission from steel and iron industries. Chemosphere, 48(10), 1061-1074.
Yang, H.-H., Lee, W.-J., Chen, S.-J., Lai, S.-O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W., Huang, R. J. (2015). Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants. Aerosol and Air Quality Research, 15(4), 1672-1680.
Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W., Li, M. S. (2014). Filterable and condensable fine particulate emissions from stationary sources. Aerosol and Air Quality Research, 14(7), 2010-2016.
Yang, T. T., Hsu, C. Y., Chen, Y. C., Young, L. H., Huang, C. H., Ku, C. H. (2017). Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol and Air Quality Research, 17(2), 563-573.
Yasuda, K., Takahashi, M. (1998). The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. Journal of the Air and Waste Management Association, 48(5), 441-447.
Yoo, J.-I., Kim, K.-H., Jang, H.-N., Seo, Y.-C., Seok, K.-S., Hong, J.-H., Jang, M. (2002). Emission characteristics of particulate matter and heavy metals from small incinerators and boilers. Atmospheric Environment, 36(32), 5057-5066.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489-515.
Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., Liu, S. Z. (2005). Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environmental Science and Technology, 39(23), 9109-9114.
Zhang, Y. J., Lin, Y., Cai, J., Liu, Y., Hong, L. N., Qin, M. M., Zheng, M. (2016). Atmospheric PAHs in North China: Spatial distribution and sources. Science of the Total Environment, 565, 994-1000.
Zhu, Y., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Wang, W. (2014). Airborne particulate polycyclic aromatic hydrocarbon (PAHs) pollution in a background site in the North China Plain: Concentration, size distribution, toxicity and sources. Science of the Total Environment, 466-467, 357-368.
自由時報,北京霾害又爆表 停工封路大癱瘓,2015。
中央社,PM2.5中南部8測站紫爆中台灣空氣差,2016。
能源局,能源統計手冊,2014。
臺中市政府環保局,公私場所管制生煤及禁用石油焦自治條例,2016。
行政院環境保護署,空氣污染排放量資料庫(TEDS9.0),2016。
行政院環境檢驗所「排放管道中氮氧化物自動檢測方法-儀器分析法(A411.74C)」。
歐盟「PM2.5 EN-14907 」採樣方法。
行政院環境檢驗所「排放管道中二氧化硫抽取式自動檢測方法-非分散性紅外光法、紫外光法、螢光法(A413.74C)」。
行政院環境檢驗所「NIEA A212.10B排放管道中細懸浮微粒(PM2.5)檢測方法」。
行政院環境檢驗所「NIEA A214.70C排放管道中可凝結性微粒檢測方法」。
行政院環境檢驗所「NIEA A102.12空氣中粒狀污染物檢測法-高量採樣法」。
行政院環境檢驗所「NIEA A730.70C排放管道中多環芳香烴之檢測方法-氣相層析質譜法」。
行政院環境檢驗所「NIEA A801.90C周界空氣中苯駢(a)芘與其他多環芳香烴檢測方法-氣相層析與高效能液相層析儀偵測法」。
張木彬,SCR、FGD及RCO/RTO對PM2.5前驅污染物去除效率探討,環保署/國科會空污防制科研合作計畫,2013。
程萬里、白珏玲、林姵吟、王瑋琦、沈育安、江柏欣、顧長軒,「103年臺中市細懸浮微粒(PM2.5)排放清冊建置暨減量措施推動計畫」,臺中市政府環境保護局,2014。
中興工程顧問公司,北部空品區粒狀物來源及管制策略評估畫,新北市政府環境保護局,2012。
李崇德,周崇光,張士昱,蕭大智,「細懸浮微粒(PM2.5)化學成份監測計劃,行政院環保署,1-276,2015。
林傳堯、周崇光、紀凱獻、林煜棋等,「臺灣中部街塵及河床沙塵特徵元素指標及來源鑑識技術建立」專案工作計畫,中央研究院環境變遷研究中心,2015。
林韡紘,都市固體廢棄物焚化爐酸性氣體處理成效探討,碩士論文,中央大學,2009。
許鈴艷,大氣懸浮微粒中多環芳香烴化合物分佈特性之研究。碩士論文, 國立清華大學生醫工程與環境科學,2005。
溫敬峰,探討雲林地區氣膠及乾沈降中多環芳香烴化合物(PAHs)其濃度及組成變化。碩士論文,中山醫學大學公共衛生學系,2013。
鄭文瑋 ,高雄地區周界空氣中多環芳香烴之分佈。碩士論文,國立高雄師範大學化學系,2010。
鄭金娥,多環芳香烴於恆春半島濃度、來源及海氣交換之研究。博士論文,國立中山大學海洋環境及工程學,2015。
魏千岱,柴油車道與汽油車道其室內外多環芳香烴化合物之探討。碩士論文。中山醫學大學公共衛生學,2012。