跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂彥鋒
Yen-Feng Lu
論文名稱: 高功率氮化鎵高電子遷移率電晶體崩潰特性優化研究
Optimization Study on the Breakdown Characteristics of High-Power GaN High Electron Mobility Transistors
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 106
中文關鍵詞: 氮化鎵高電子遷移率電晶體高功率元件動態電阻崩潰電壓導電率磊晶
外文關鍵詞: GaN HEMT, Power Device, Dynamic Ron, Breakdown voltage, Conductivity, Epitaxy
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是優化高功率氮化鎵高遷移率電晶體(GaN HEMT)
    之磊晶結構,以提升其垂直崩潰電壓、導電性能和動態電阻表現。首先,
    我們通過引入超晶格結構,使磊晶層的垂直崩潰電場從1.75 MV/cm提升
    至1.94 MV/cm,並進一步確定了氮化鎵緩衝層中的最佳碳摻雜濃度,最
    終在優化超晶格結構後,磊晶層的垂直崩潰電場提升至2.28 MV/cm。基
    於此設計的高功率GaN HEMT元件,並結合P型氮化鎵及合適的氮化鋁
    鎵位障層,元件在汲極-閘極距離(Lgd)為13 μm的條件下,實現了1351
    V@1 mA/mm (1600 V@1 mA/mm, substrate floating)的崩潰電壓、1.2 V 的
    閾值電壓,以及1.95 mΩ-cm²的特徵導通電阻,達到國際領先水準。
    此外,對下位障層進行鋁含量和厚度的調整,能有效減少通道層內電
    場變化,從而顯著改善通道導電率。當下位障層鋁含量由6 %降至2 %,
    厚度從100 nm增加至150 nm後,在-100 V基板負偏壓下,通道導電率
    的下降程度由78 %顯著減少至38 %。然而,較低鋁含量和較厚的下位障
    層結構,雖然在負偏壓下提升了導電性,但動態電阻有所增加。本研究設
    計鋁含量6 %、厚度50 nm之下位障層結構在VDSQ為80 V的條件下,動
    態電阻由原本的7.54倍下降至4.3倍,動態特性明顯獲得改善。
    總結來說,本研究的創新在於通過精確的超晶格結構和下位障層設
    計,成功提升了GaN HEMT元件的垂直崩潰電壓、導電性能與動態電阻表現,並提出了根據應用需求靈活設計下位障層的策略,以平衡導電性與
    動態電阻,確保元件在高功率操作中的穩定性與效率。


    The primary objective of this research is to optimize the epitaxial structure
    of high-power gallium nitride high electron mobility transistors (GaN HEMTs)
    in order to enhance their vertical breakdown voltage, electrical conductivity,
    and dynamic resistance performance. Initially, the introduction of a superlattice
    structure increased the vertical breakdown field of the epitaxial layer from 1.75
    MV/cm to 1.94 MV/cm. Through further optimization, the ideal carbon doping
    concentration in the GaN buffer layer was identified, eventually raising the
    vertical breakdown field of the epitaxial layer to 2.28 MV/cm following the
    refinement of the superlattice structure.
    Using this optimized design, the fabricated high-power GaN HEMT
    devices, incorporating a p-type GaN and a suitable AlGaN barrier layer,
    demonstrated a breakdown voltage of 1351 V@1 mA/mm (1600 V@1 mA/mm,
    substrate floating), a threshold voltage of 1.2 V, and a specific on-resistance of
    1.95 mΩ-cm² for a gate-to-drain distance (Lgd) of 13 μm, achieving
    internationally competitive performance standards.
    Additionally, modifying the aluminum content and thickness of the back
    barrier layer proved effective in reducing the electric field variation in the
    channel layer, thereby substantially improving the channel conductivity. When
    the aluminum content in the back barrier was decreased from 6 % to 2 %, and
    its thickness increased from 100 nm to 150 nm, the drop in channel conductivity
    under a substrate negative bias of -100 V decreased from 78 % to 38 %.
    However, while the lower aluminum content and thicker back barrier improved
    conductivity under negative bias, the dynamic resistance increased. In this
    study, a back barrier structure with 6 % aluminum content and 50 nm thickness reduced the dynamic resistance from 7.54 times to 4.3 times under a VDSQ of
    80 V, considerably improving dynamic characteristics.
    In summary, the novelty of this work lies in the precise design of
    superlattice structures and back barrier layers, which successfully enhance the
    vertical breakdown voltage, conductivity, and dynamic resistance performance
    of GaN HEMT devices. The study also introduces strategies for flexible back
    barrier design tailored to specific application needs, balancing conductivity and
    dynamic resistance to ensure device stability and efficiency under high-power
    operation conditions.

    論文摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xv 第一章 導論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 運用在功率元件上的寬能隙材料介紹 2 1.2.2 自發極化效應 3 1.2.3 壓電極化效應 5 1.2.4 二維電子氣 6 1.3 研究動機 9 1.3.1 前言 9 1.3.2 高功率元件: 崩潰電壓限制 9 1.3.3 高電壓GaN HEMT發展背景 11 1.3.4 實驗設計理念與論文架構 14 1.4 論文架構 15 第二章 實驗方法 16 2.1 有機金屬氣相磊晶成長法 16 2.1.1 磊晶設備介紹 16 2.1.2 有機金屬氣相磊晶 17 2.1.3 GaN HEMT磊晶基本結構 19 2.2 磊晶片特性量測機台介紹與方法 21 2.2.1 前言 21 2.2.2 光致發光量測 22 2.2.3 霍爾效應量測 23 2.2.4 表面粗糙度量測 25 2.3 高垂直崩潰電壓緩衝層實驗項目 26 2.3.1 GaN HEMT超晶格緩衝層介紹 26 2.3.2 GaN HEMT超晶格緩衝層設計 28 2.3.3 高阻值碳摻雜氮化鎵緩衝層設計 29 2.3.4 元件崩潰電壓量測機台及方法 30 2.4 下位障層結構實驗項目 31 2.4.1 降低碳摻雜對於元件導電性影響 31 2.4.2 下位障層結構設計 32 2.4.3 元件基板負偏壓量測機台及方法 33 2.5 GaN HEMT常關型元件設計 34 2.5.1 前言 34 2.5.2 導通電阻 34 2.5.3 閾值電壓 37 2.5.4 GaN HEMT常關型元件設計 40 2.6 本章總結 41 第三章 結果與討論 42 3.1 提升垂直崩潰電壓 42 3.1.1 超晶格緩衝層結構對於崩潰電壓影響 42 3.1.2 碳摻雜濃度對於崩潰電壓影響 45 3.1.3 高垂直崩潰電壓緩衝層設計實驗 48 3.1.4 高垂直崩潰電壓緩衝層結果 49 3.1.5 本章總結 52 3.2 磊晶片表面粗糙度 55 3.2.1 本章總結 56 3.3 下位障層 57 3.3.1 前言 57 3.3.2 負基板偏壓量測分析 60 3.3.3 下位障層之優化: 負基板偏壓量測 66 3.3.4 動態電阻特性 68 3.3.5 本章總結 71 結論與未來展望 72 參考文獻 74 附錄1 78 附錄2 85

    [1] N. Islam, M. F. P. Mohamed, M. F. A. J. Khan, S. Falina, H. Kawarada, and M.
    Syamsul, “Reliability, applications and challenges of GaN HEMT technology for
    modern power devices: A review,’’ Crystals, vol. 12, no. 11, pp. 1581, Nov. 2022.
    [2] Power GaN 2021: Epitaxy, Devices, Application and Technology Trends Report.
    2021. Available online: http://www.yole.fr/GaN_Power_Epitaxy_Devices_
    Applications_ Technology_Trends_2021.aspx
    [3] X. H. Wen, H. A. Ming, J. G. Zhong, L. S. Bing, P. Tao, and L. Ming, “An overview
    of the ultrawide bandgap Ga2O3 semiconductorbased Schottky barrier diode for power
    electronics application,” Nanoscale Res. Lett., vol. 13, no.1, pp. 290, Sep. 2018.
    [4] P. M. Asbeck, “Electronic properties of III-nitride materials and basics of III-nitride
    FETs,” Semiconductors and Semimetals., vol. 102, pp. 1-40, Oct. 2019.
    [5] https://ebrary.net/82450/computer_science/spontaneous_polarization
    [6] H. X. Guang, D. G. Zhao, and D. S. Jiang, “Formation of two-dimensional electron
    gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,”
    Chin. Phys. B, vol. 24, no. 6, pp. 067301, Apr. 2015.
    [7] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally-off
    HEMTs with p-GaN gate,” Mater. Sci. Semicond. Process., vol. 78, pp. 96–106, May.
    2018.
    [8] I. Hwang, H. Choi, J. W. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J.
    Oh, J. Y. Kim, J. K. Shin, Y. Park, U. Chung, I. K. Yoo, and K. Kim, “1.6 kV, 2.9 mΩ
    cm2 normally-off p-GaN HEMT device,” in Proc. 24th Int. Symp. Power Semicond.
    Devices, pp. 41–44, Jun. 2012.
    [9] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida,
    “GaN power transistors on Si substrates for switching applications,” Proceedings of
    the IEEE, vol. 98, no. 7, pp. 1151–1161, Jul. 2010.
    [10] Q. Hu, S. Li, T. Li, X. Wang, X. Li, and Y. Wu, “Channel engineering of normally
    OFF AlGaN/GaN MOS-HEMTs by atomic layer etching and high-k dielectric,” IEEE
    Electron Device Lett., vol. 39, no. 9, pp. 1377–1380, Sep. 2018.
    [11] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, “1300 V normally-off
    p-GaN gate HEMTs on Si with high on-state drain current,” IEEE Trans. Electron
    Devices, vol. 68, no. 2, pp. 653–657, Feb. 2021.
    [12] W. Choi, O. Seok, H. Ryu, H.-Y. Cha, and K.-S. Seo, “High-voltage and low-leakage
    current gate recessed normally-off GaN MIS-HEMTs with dual gate insulator
    employing PEALD-SiNx/RF-sputtered-HfO2 ,” IEEE Electron Device Lett., vol. 35,
    no. 2, pp. 175–177, Feb. 2014.
    [13] M. Zhu, J. Ma, L. Nela, C. Erine, and E. Matioli, “High-voltage normally-off recessed
    tri-gate GaN power MOSFETs with low onresistance,” IEEE Electron Device Lett.,
    vol. 40, no. 8, pp. 1289–1292, Aug. 2019.
    [14] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density E-mode
    Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit
    (4 × 108 V2 Ω−1 cm−2),” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3079–3083,
    Oct. 2013.
    [15] S. Gao, X. Liu, J. Chen, Z. Xie, Q. Zhou, H. Wang, “High breakdown-voltage GaN
    based HEMTs on silicon with Ti/Al/Ni/Ti ohmic contacts,” IEEE Electron Device
    Letters, vol. 42, no. 4, pp.481-484, Apr. 2021.
    [16] A. Fontsere, A. Perez-Tomas, V. Banu, P. Godignon, J. Millan, H. De Vleeschouwer,
    J. M. Parsey, and P. Moens, “A HfO2 based 800 V/300 °C Au-free AlGaN/GaN-on-Si
    HEMT technology,” in Proc. 24th ISPSD, pp. 37–40, Jun. 2012.
    [17] C. H. Wu, J. Y. Chen, P. C. Han, M. W. Lee, K. S. Yang, H. C. Wang, P. C. Chang, Q.
    H. Luc, Y. C. Lin, C. F. Dee, A. A. Hamzah, and E. Y. Chang, “Normally-off tri-gate
    GaN MIS-HEMTs with 0.76 mΩ·cm2 specific on-resistance for power device
    applications,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3441-3446, Aug.
    2019.
    [18] R. Hao, W. Li, K. Lai, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, Y.
    Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, “Breakdown enhancement and current
    collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN
    HEMTs,” IEEE Electron Device Lett., vol. 38, no. 11, pp. 1567–1570, Nov. 2017.
    [19] J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Effects of carbon on the electrical
    and optical properties of InN, GaN, and AlN,” Phys. Rev. B, vol. 89, no. 3, pp.
    035204-1–035204-8, Jan. 2014.
    [20] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer thickness contribution to suppress
    vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,”
    IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011.
    [21] L. Heuken, M. Kortemeyer, A. Ottaviani, M. Schröder, M. Alomari, D. Fahle, M.
    Marx, M. Heuken, H. Kalisch, A. Vescan, J. N. Burghartz, “Analysis of an
    AlGaN/AlN super-lattice buffer concept for 650-V low-dispersion and high-reliability
    GaN HEMTs,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1113–1119, Mar.
    2020.
    [22] A. Tajalli, M. Meneghini, S. Besendörfer, R. Kabouche, I. Abid, R. Püsche, J.
    Derluyn, S. Degroote, M. Germain, Elke Meissner, E. Zanoni, F. Medjdoub, and G.
    Meneghesso, “High breakdown voltage and low buffer trapping in superlattice gan
    on-silicon heterostructures for high voltage applications,” Materials, vol. 13, no.19,
    pp. 4271, Sep. 2020.
    [23] I. Abid, Y. Hamdaoui, J. Mehta, J. Derluyn, and F. Medjdoub, “Low buffer trapping
    effects above 1200 V in normally off GaN-on-silicon field effect transistors,”
    Micromachines, vol. 13, no. 9, pp. 1519, Sep. 2022.
    [24] M. J. Uren, S. Karboyan, I. Chatterjee, A. Pooth, P. Moens, A. Banerjee, and M.
    Kuball, “Leaky dielectric’ model for the suppression of dynamic RON in carbon
    doped AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 64, no. 7, pp. 2826
    2834, Jul. 2017
    [25] M. Meneghini et al., “GaN-based power devices: Physics, reliability, and
    perspectives,” J. Appl. Phys., vol. 130, no. 18, Art. no. 181101, Nov. 2021
    [26] H. Tokuda, J. T. Asubar, and M. Kuzuhara, “Design considerations for normally-off
    operation in Schottky gate p-GaN/AlGaN/GaN HEMTs,” Jpn. J. Appl. Phys., vol. 59,
    no. 8, p. 084002, Jul. 2020
    [27] B. Lu, E. L. Piner, and T. Palacios, “Temperature Dependent Vertical Conduction of
    GaN HEMT Structures on Silicon and Bulk GaN Substratese,” in Proc. of Device
    Research Conference (DRC), pp. 193–194, Jun. 2010.
    [28] H. Umeda, A. Suzuki, Y. Anda, M. Ishida, T. Ueda, T. Tanaka, and D. Ueda,
    “Blocking-voltage boosting technology for GaN transistors by widening depletion
    layer in Si substrates,” in IEDM Tech. Dig., San Francisco, CA, pp. 480–483, Dec. 6
    8, 2010.
    [29] L. Heuken, M. Alshahed, A. Ottaviani, M. Alomari, M. Heuken, C. Wächter, T.
    Bergunde, I. Cora, L. Toth, B. Pecz, and J. N. Burghartz, “Temperature dependent
    vertical conduction of GaN HEMT structures on silicon and bulk GaN substrates,”
    Phys. Status Solidi A, vol. 216, no. 1, Sep. 2019.
    [30] M. A. Reshchikov, M. Vorobiov, O. Andrieiev, K. Ding, N. Izyumskaya, V. Avrutin, A.
    Usikov, H. Helava and Y. Makarov, “Determination of the concentration of impurities
    in GaN from photoluminescence and secondary-ion mass spectrometry,” Scientific
    Reports , vol. 10, no. 1, p. 2223, 2020.
    [31] S. Wu, X. Yang, Q. Zhang, Q. Shang, H. Huang, J. Shen, X. He, F. Xu, X. Wang, W.
    Ge, and B. Shen, “Direct evidence of hydrogen interaction with carbon: C–H complex
    in semi-insulating GaN,” Appl. Phys. Lett., vol. 116, no. 26, Art. no. 262101, Jun.
    2020
    [32] Y. Tokuda, Y. Matsuoka, H. Ueda, O. Ishiguro, N. Soejima, and T. Kachi, “DLTS
    study of n-type GaN grown by MOCVD on GaN substrates,” Superlattices
    Microstruct., vol. 40, nos. 4–6, pp. 268–273, Oct. 2006.
    [33] U. Honda, Y. Yamada, Y. Tokuda, and K. Shiojima, “Deep levels in n-GaN doped with
    carbon studied by deep level and minority carrier transient spectroscopies,” Jpn. J.
    Appl. Phys., vol. 51, no. 4S, pp. 04DF04-1–04DF04-4, Apr. 2012.
    [34] M. G. Ganchenkova and R. M. Nieminen, “Nitrogen vacancies as major point defects
    in gallium nitride,” Phys. Rev. Lett., vol. 96, no. 19, p. 196402, May. 2006

    QR CODE
    :::