跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張峻堯
Chun-Yu Chang
論文名稱: 碘分子R(81)29-0 超精譜線用於539.5-nm 雷射穩頻
Study on the R(81)29-0 hyperfine transitions of iodine molecule (127I_2) for 539.5-nm diode laser stabilization
指導教授: 鄭王曜
Wang-Yau Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 碘分子超精細分裂躍遷偏頻鎖頻頻率調製光譜鎖頻
外文關鍵詞: Iodine hyperfine transition, Offset Locking, Frequency modulation spectroscopy
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碘分子的躍遷譜綫由於大多分佈在可見光範圍以及很密集,所以碘分子的穩頻系統常用來當作雷射頻率參考源。
    在這個實驗我們使用1079 nm 的外腔式半導體雷射作為光源,並使用倍頻晶體將波長倍頻至539.5 nm。然後通過頻率調製光譜鎖頻以及偏頻鎖頻的方法來測量碘分子R(81)29-0 躍遷的超精細分裂譜綫間距。實驗值與程式IodineSpec5 計算值相比,差值都在60.1 kHz 以内。此外,我們也測量了此躍遷的壓致偏移以及壓致增寬,分別爲11.18 ± 0.8 kHz/Pa 和88.2 ± 2.2 kHz/Pa。
    然後,我們也將雷射頻率鎖在R(81)29-0 躍遷的a_1 譜綫上,并於另一臺穩頻雷射拍頻取得Allan deviation,頻率穩定度在積分時間為10 秒時可以達到6 × 10^(−12) 的等級。


    Laser stabilizing system are frequently used as laser frequency reference since transition spectral line of iodine molecule are dense and are mostly distributed at visible range.
    In this experiment we use a 1079 nm External Cavity Diode Laser (ECDL) as light source, and frequency doubling into 539.5 nm. Next we measure the spacing of R(81)29-0 hyperfine transition lines by using frequency modulation spectroscopy and offset locking system. The difference between experimental value and calculated value from program IodineSpec5 is below 60.1 kHz. We also measured the pressure shift and pressure broadening of this transition, which is 11.18 ± 0.8 kHz/Pa and 88.2 ± 2.2 kHz/Pa respectively.
    Furthermore, we locked our laser frequency on a1 spectral line of R(81)29-0 transition, and obtain Allan deviation of beat frequency with another frequency stabilized laser. After 10 s time integration, the frequency stability can arrived 6 × 10^(−12).

    摘要. . . . . . . . . . . . . . . . . . . . . .v Abstract. . . . . . . . . . . . . . . . . . . . . . vii 致謝. . . . . . . . . . . . . . . . . . . . . .ix 目錄. . . . . . . . . . . . . . . . . . . . . .xi 圖目錄. . . . . . . . . . . . . . . . . . . . . .xiii 表目錄. . . . . . . . . . . . . . . . . . . . . .xv 第一章 動機. . . . . . . . . . . . . . . . . . . . . .1 第二章 基本原理. . . . . . . . . . . . . . . . . . . . . .3 2.1 碘分子超精細分裂躍遷介紹. . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 碘分子的電子躍遷. . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 超精細分裂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.3 超精细分裂的Hamiltonian . . . . . . . . . . . . . . . . . . . . . 5 2.2 飽和吸收光譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 比爾-朗伯定律(Beer-Lambert law) . . . . . . . . . . . . . . . . 5 2.2.2 燒洞效應(hole burning effect) . . . . . . . . . . . . . . . . . . 6 2.2.3 蘭姆凹陷(Lamb dip) . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 飽和吸收光譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 頻率調制光譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 偏頻鎖頻介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Pound-Drever-Hall 穩頻法. . . . . . . . . . . . . . . . . . . . . . . 14 第三章 實驗架設. . . . . . . . . . . . . . . . . . . . . .17 3.1 雷射系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 倍頻晶體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 頻率參考源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 PDH 鎖頻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 頻率調制光譜實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6 偏頻鎖頻實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第四章 結果與討論. . . . . . . . . . . . . . . . . . . . . .31 4.1 R(81)29-0 全譜線圖. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 訊噪比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 壓致偏移與壓致增寬. . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 穩頻雷射的穩定度. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 R(81)-29-0 躍遷的超精細分裂譜線間距. . . . . . . . . . . . . . . . 40 第五章 總結. . . . . . . . . . . . . . . . . . . . . .43 5.1 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 參考文獻. . . . . . . . . . . . . . . . . . . . . .45

    [1] R. W. Boyd, Nonlinear Optics, Third Edition. USA: Academic Press, Inc., 3rd ed.,2008.
    [2] S. Karki, D. Tuyenbayev, S. Kandhasamy, B. Abbott, T. Abbott, E. Anders,J. Berliner, J. Betzwieser, C. Cahillane, L. Canete, et al., “The advanced ligo photon calibrators,” Review of Scientific Instruments, vol. 87, no. 11, p. 114503, 2016.
    [3] Y. Tian, P. Yang, W. Wu, S. Li, G. Li, P. Zhang, and T. Zhang, “Precision measurement of cesium 6s–7s two-photon spectra with single trapped atoms,” Japanese Journal of Applied Physics, vol. 58, no. 4, p. 042002, 2019.
    [4] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science, vol. 275, no. 5307, pp. 1759–1763, 1997.
    [5] J. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy. Second Edition. Dover Books on Chemistry, Dover Publications, 2012.
    [6] Z.-G. Wang and H.-R. Xia, Molecular and laser spectroscopy. Springer-Verlag Berlin, 1991.
    [7] M. Gläser, D. Kegung, and H. Foth, “Hyperfine structure and fluorescence analysis of enriched 129i2 at the 612 nm wavelength of the he-ne laser,” Optics Communications, vol. 38, no. 2, pp. 119–123, 1981.
    [8] M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett., vol. 23, pp. 631–633, Sep 1969.
    [9] P. Bunker and G. Hanes, “Nuclear spin-spin coupling in the spectrum of i2 at 6328 Å,” Chemical Physics Letters, vol. 28, no. 3, pp. 377–379, 1974.
    [10] L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin spin interactions in i2 using laser spectroscopy,” Phys. Rev. Lett., vol. 35, pp. 568–571, Sep 1975.
    [11] F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127i2,” J. Opt. Soc. Am. B, vol. 18, pp. 1416–1422, Oct 2001.
    [12] F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B, vol. 18, pp. 379–387, Mar 2001.
    [13] G. Hanes, J. Lapierre, P. Bunker, and K. Shotton “Nuclear hyperfine structure in the electronic spectrum of 127i2 by saturated absorption spectroscopy, and comparison with theory,” Journal of Molecular Spectroscopy, vol. 39, no. 3, pp. 506–515, 1971.
    [14] S. Picard-Fredin and A. Razet, “On the hyperfine structure of iodine : To calculate hyperfme constants on the basis of experimental data,” Rapport BIPM-91/2.
    [15] W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation. Springer Berlin Heidelberg.
    [16] W.-Y. Cheng, T.-J. Chen, C.-W. Lin, B.-W. Chen, Y.-P. Yang, and H. Y. Hsu,“Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two-photon spectroscopy,” Optics Express, vol. 25, no. 3, pp. 2752–2762, 2017.
    [17] E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,”American journal of physics, vol. 69, no. 1, pp. 79–87, 2001.
    [18] ComponentLibrary is a free, open collection of images for drawing diagrams related to laser optics. ComponentLibrary by Alexander Franzen is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.Website: http://www.gwoptics.org/ComponentLibrary/.
    [19] E. Kirilov, M. J. Mark, M. Segl, and H.-C. Nägerl “Compact, robust, and spectrally pure diode-laser system with a filtered output and a tunable copy for absolute referencing,” Applied Physics B, vol. 119, pp. 233–240, mar 2015.
    [20] G. Boyd and D. Kleinman, “Parametric interaction of focused gaussian light beams,”Journal of Applied Physics, vol. 39, no. 8, pp. 3597–3639, 1968.
    [21] L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine1,” Journal of the American Chemical Society, vol. 58, no. 11, pp. 2260–2263, 1936.
    [22] Program IodineSpec5, kindly provided by Prof.Dr.Eberhard Tiemann, from Institut f¨ur Quantenoptik, Universit¨at Hannover, https://www.iqo.uni-hannover.de/.

    QR CODE
    :::