跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政訓
Cheng-Hsun Wu
論文名稱: 幾何布朗運動之推廣與應用
A generalization of geometric Brownian motion with applications
指導教授: 許玉生
Yu-Sheng Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 97
語文別: 英文
論文頁數: 143
中文關鍵詞: 布朗運動幾何布朗運動永續憑證問題選擇權定價隨機過程之統計推論財務工程
外文關鍵詞: Brownian motion, geometric Brownian motion, perpetual warrants, option pricing, statistical inference for stochastic processes, financial engineering
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 布朗運動(Brownian motion)是一個實用的數學模型 (Wiener (1923), Levy
    (1948), Ciesielski (1961)),在生物(Brown(1827))、物理(Eistein (1905),
    Mazo (2002))、經濟與財務工程(Bachelier (1900), Black and Scholes (1973))
    隨機微積分(Ito (1944))及許多領域上廣為研究及應用,成果豐碩, 影響深
    遠。
    雖然幾何布朗運動有著多元化的應用,但是無法涵蓋所有的隨機現象。因此推廣幾何布朗運動, 可以擴展適用範圍,此為本文之主要的目的。本文研究下列幾何布朗運動所推廣的隨機過程及其變化型式。
    我們將研究此隨機過程之數學性質,討論其在財務工程的應用,並提出參數之統計推論。


    Brownian motion is a rigorous mathematical model (Wiener (1923), Levy (1948),
    Ciesielski (1961)) with fruitful applications ranging from biology (Brown (1827)),
    physics (Einstein (1905), Mazo (2002)), economy and financial engineering
    (Bachelier (1900), Black and Scholes (1973)), to stochastic calculus (Ito (1944)),
    among others.
    Functional of Brownian motion is also useful in stochastic modeling. This is
    particularly true for geometric Brownian motion. For instance, it has been applied to
    model prices of stock (page 365 in Karlin and Taylor (1975), Black and
    Scholes(1973)), rice (Yoshimoto el al. (1996)), labor (page 363 in Karlin and Taylor
    (1975)) and others (Shoji (1995)). See Yor (2001) for more details.
    Although geometric Brownian motion has a great variety of applications, it can not
    cover all the random phenomena. It is then desirable to find a general model with
    geometric Brownian motion as a special model. The purpose of this paper is to
    investigate the generalizations of geometric Brownian motion
    and its variants.
    For the processes mentioned above, we will first study their mathematical properties. Next, we will discuss their applications in financial engineering. In practice, the parameters are unknown and have to be inferred from
    realizations of processes. We will present estimation and test procedures.

    Contents 1 Introduction 1 2 Mathematical Properties of U(t) and X(t) 5 2.1 Distributional Properties . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Martingale Properties . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 First Passage Times . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Distributions of ¯ Tu and Tx . . . . . . . . . . . . . . . . . 16 2.3.2 Laplace Transforms of ¯ Tu and Tx . . . . . . . . . . . . . 21 3 Applications of X(t) in Financial Engineering 25 3.1 PerpetualWarrant Problem . . . . . . . . . . . . . . . . . . . . 27 3.2 Option Pricing Problem . . . . . . . . . . . . . . . . . . . . . . 30 3.3 The Optimal Portfolio SelectionProblem . . . . . . . . . . . . . 33 4 Statistical Inferences Based on U(t) and X(t) 39 4.1 Normal and Likelihood Based Inferences . . . . . . . . . . . . . 40 4.1.1 Statistical Inferences for a and b Based on Sampling Scheme A . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.2 Statistical Inferences for c and d Based on Sampling Scheme A . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.3 Statistical Inferences for c and d Based on Sampling Scheme B . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.4 Statistical Inferences for a and b Based on Sampling Scheme C . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Quadratic Variation Based Inferences . . . . . . . . . . . . . . . 54 4.2.1 Statistical Inferences Based on Sampling Scheme C . . . 54 4.2.2 Statistical Inferences Based on Sampling Scheme D . . . 62 5 Theory and Applications of Y (t) 71 5.1 Mathematical Properties of Y (t) . . . . . . . . . . . . . . . . . . 72 5.1.1 Distributions and Moments of Y (t) . . . . . . . . . . . . 72 5.1.2 Martingale Properties of Y (t) . . . . . . . . . . . . . . . 78 5.1.3 First Passage Time of Y (t) . . . . . . . . . . . . . . . . . 79 5.2 Applications of Y (t) in Financial Engineering . . . . . . . . . . 81 5.2.1 The Properties of the Bankrupt Time . . . . . . . . . . . 82 5.2.2 The PerpetualWarrant Problem. . . . . . . . . . . . . . 84 5.2.3 The Option Pricing Problem . . . . . . . . . . . . . . . . 87 5.3 Statistical Inferences Based on Y (t) . . . . . . . . . . . . . . . . 94 5.3.1 Method ofMoment Based Inferences . . . . . . . . . . . 94 5.3.2 Quadratic Variation Based Inferences . . . . . . . . . . . 95 6 Theory and Applications of Zx(t) and Zy(t) 97 6.1 Mathematical Properties of Zx(t) and Zy(t) . . . . . . . . . . . 98 6.1.1 Distributional Properties . . . . . . . . . . . . . . . . . . 98 6.1.2 Martingale Properties . . . . . . . . . . . . . . . . . . . 102 6.1.3 First Passage Time . . . . . . . . . . . . . . . . . . . . . 103 6.2 Applications of Zx(t) and Zy(t) in Financial Engineering . . . . 106 6.2.1 PerpetualWarrants . . . . . . . . . . . . . . . . . . . . . 106 6.2.2 Option Pricing Problem . . . . . . . . . . . . . . . . . . 106 6.3 Statistical Inferences Based on Zx(t) and Zy(t) . . . . . . . . . . 107 6.3.1 Statistical Inferences for a and b . . . . . . . . . . . . . . 107 6.3.2 Statistical Inferences for c and d . . . . . . . . . . . . . . 109 6.3.3 Quadratic Variation Based Inferences . . . . . . . . . . . 111 7 Conclusions 113 A 119 B 121 C 125 D 129 E 131 F 133 G 137 H 141 I 143

    References
    [1] Anderson, T. W.(1984). An Introduction to Multivariate Statistical Analysis.
    2nd ed., Wiley.
    [2] Bachelier, L. (1900). Th´eotie de la sp´eculation. Ann. Sci. ´ Ecole N´orm.
    Sup., 17, 21-86.
    [3] Black, F. and Scholes, M. (1973). The pricing of options and corporate
    liabilities. J. Polit. Econ., 81, 637-654.
    [4] Brigo, D. and Mercurio, F. (2001). Displaced and mixture diffusions for
    analytically-tractable smile models. In Mathematical Finance - Bachelier
    Congress 2000, Geman, H., Madan, D.B., Pliska, S.R., Vorst, A.C.F., eds.
    Springer Finance, Springer, Berlin, 151-174.
    [5] Brigo, D. and Mercurio, F. (2002a). On stochastic differential equations
    with marginal laws evolving according to mixtures of densities. Working
    paper, Banca IMI.
    [6] Brigo, D. and Mercurio, F. (2002b). Lognormal-mixture dynamics and
    calibration to market volatility smiles. Int. J. Theor. Appl. Fin., 5, 427-
    446.
    [7] Brigo, D., Mercurio, F. and Sartorelli, G. (2003). Alternative asset-price
    dynamics and volatility smile. Quant. Fin., 3, 173-183.
    [8] Brown, R. (1827). A brief account of microscopical observations. London.
    [9] Carr, P., Tari, M. and Zariphopoulou, T. (1999). Closed form option
    valuation with smiles. Preprint. NationsBanc Montgomery Securities.
    [10] Ciesielski, Z. (1961). Holder condition for realizations of Gaussian processes.
    Trans. Amer. Math. Soc., 99, No. 3. 403-413.
    [11] Chang, F. R. (2004). Stochastic Optimization in Continuous Time. Cambridge
    University Press.
    [12] Cheng, P. and Scaillet, O. (2007). Linear-quadratic jump-diffusion modeling.
    Math. Fin., 17, No. 4. 575-598.
    [13] Cox, J.C. (1975). Notes on options pricing I: constant elasticity of variance
    diffusions. Working paper, Stanford University.
    [14] Cox, J.C. and Ross, S.A. (1976). The valuation of options for alternative
    stochastic processes. J. Fin. Econ., 3, 145-166.
    [15] Einstein, A. (1905). On the movement of small particles suspend in a
    stationary liquid demanded by the molecular-kinetic theory of heat. Ann.
    Phys. 17, 549-560.
    [16] Geman, H and Yor, M. (1996). Pricing and hedging double-barrier options:
    a probabilistic approach. Math. Fin., 6, No. 4. 575-598.
    [17] Guo, C. (1998). Option pricing under heterogeneous expectations. Fin.
    Rev., 33, 81-92.
    [18] Harrison, J.M. and Pliska, S.R. (1981). Martingales and stochastic integrals
    in the theory of continuous trading. Stoch. Proc. and their Appl. 11,
    215-260.
    [19] Hull, J.C. and White, A. (1987). The pricing of options on assets with
    stochastic volatilities. J. Fin. 42, 281-300.
    [20] Ito, K. (1944). Stochastic integral. Proc. Imp. Acad. Tokyo, 20, 519-524.
    [21] Kao, E. P. C. (1997). An Introduction to Stochastic Processes. Duxbury
    Press.
    [22] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic
    Calculus, 2nd Edition. Springer-Verlag New York.
    [23] Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes.
    Academic Press, New York.
    [24] Levy, P. (1948). Processus Stochastiques et Mouvement Brownien.
    Gauthier-Vilrs, Paris.
    [25] Mazo, R. M. (2002). Brownian Motion: Fluctuations, Dynamics, and
    Applications. Clarendon Press. Oxford.
    [26] Melick, W.R. and Thomas, C.P. (1997). Recovering an asset’s implied
    PDF from option prices: an application to crude oil during the Gulf crisis.
    J. Fin. Quant. Anal., 32, 91-115.
    [27] Merton, R. C. (1971). Optimum consumption and portfolio rules in a
    continuous-time model. J. Econ. Theory, 3, 373-413.
    [28] Merton, R. C. (1973). Theory of rational option pricing. Bell J. Econ.
    Manage. Sci., 4, No. 3, 141-183.
    [29] Merton, R. C. (1990). Continuous-Time Finance. Blackwell Publishers.
    [30] Musiela, M. and Rutkowski, M. (2005). Martingale Methods in Financial
    Modelling, 2nd Edition. Springer-Verlag, Berlin and Heidelberg.
    [31] Øksendal, B. (2000). Stochastic Differential Equations, 5th ed. Springer-
    Verlag, New York.
    [32] Protter, P. (2003). Stochastic Integration and Differential Equations. 2nd
    Edition. Springer-Verlag, Berlin Heidelberg New York.
    [33] Ritchey, P. (1990). Call option valuation for discrete normal mixtures. J.
    Fin. Res., 13, 285-296.
    [34] Ross, S. M. (1996). Stochastic Processes. John Wiley & Sons, Inc.
    [35] Rubinstein, M. (1985). Nonparametric tests of alternative option pricing
    models using all reported trades and quotes on the thirty most active
    CBOE option classes from August 23, 1976 through August 31, 1978. J.
    Fin. 40, 455-480.
    [36] Shastri, K. and Wethyavivorn, K. (1987). The valuation of currency options
    for alternative stochastic processes. J. Fin. Res. 10, 283-293.
    [37] Shreve, S. E. (2004). Stochastic Calculus for Finance II, Continuous-Time
    Models. Springer-Verlag New York.
    [38] Shoji, I. (1995). Estimation and inference for continuous time stochastic
    models. Doctoral Thesis, Institute of Statistical Mathematics, Tokyo.
    [39] Steele, J. M. (2001). Stochastic Calculus and Financial Applications.
    Springer-Verlag, New York.
    [40] Taylor, S.J. and Xu, X. (1993). The magnitude of implied volatility smiles:
    theory and empirical evidence for exchange rates. Rev. Fut. Mark. 13,
    355-380.
    [41] Wiener, R. (1923). Differential space. J. Math. Phys., 2, 131-174.
    [42] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of
    stochastic differential equations. J. Math. Kyoto Univ., 11, 155-167.
    [43] Yor, M. (2001). Exponential Functionals of Brownian Motion and Related
    Processes. Springer.
    [44] Yoshimoto, A., Shoji, I. and Yoshimoto, Y. (1996). Application of a
    stochastic control model to a free market policy of rice. Statistical Analysis
    of time Series. Research Report No. 90, Institute of Statistical Mathematics.
    Tokyo.

    QR CODE
    :::