跳到主要內容

簡易檢索 / 詳目顯示

研究生: 馮凱毅
Kai-yi Fong
論文名稱: 以陽極氧化鋁模板製備週期性金奈米洞陣列及其光學性質之探討
Fabrication of Au Nanohole Arrays by Anodic Aluminum Oxide Templates and Their Optical Properties
指導教授: 陳一塵
I-chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 週期性金奈米洞陣列陽極氧化鋁模板折射率敏感度
外文關鍵詞: Au nanohole arrays, anodic aluminum oxide templates, refractive indexsensitiv
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,金屬奈米結構由於獨特的表面電漿共振的特性,具有相當大的潛力可應用,可利用於化學、生物感測器以及新穎光學元件的應用。
    本研究以陽極氧化鋁模板製備不同尺寸及厚度的金屬奈米洞陣列於玻璃基板上,相較於傳統微影製程,陽極氧化鋁模板為一低成本,並且可用於製作大尺寸奈米結構之方式。並對不同厚度和直徑的金奈米洞陣列並對其光學性質的變化進行探討和模擬做比較。當固定孔洞直徑為 211 nm,隨著厚度分別為 18、30 及 45 nm 的增加,表面電漿共振波長會從 993 nm 位移至 884 nm 以及 839 nm。而在固定厚度為 30 nm 的情況下,孔洞直徑分別為 170 nm、211 nm 及 232 nm 時,其表面電漿共振波長會從 796 nm 位移至 884 nm 和 910 nm。以上實驗的結果與模擬結果擁有相同的趨勢且誤差皆在 5 % 以下。
    在折射率敏感度的量測上可發現,在固定奈米孔洞陣列直徑下隨著的厚度越薄,折射率的敏感度越靈敏,其敏感度在 18 nm 厚度的為 432 nm/RIU。而當固定厚度則是在直徑越大時,有較佳的折射率敏感度,在直徑 232 nm 時的環境折射率敏感度為 368 nm/RIU。


    In recent years, due to the outstanding optical properties of metal nanostructures with surface plasmon resonance, there has been increasing interest in the fabrication of nanometer-sized fine structures because of their potential utilization in electronic, optical, and micromechanical devices.
    In this study, we fabricate periodic Au nanohole arrays on glass substrate with different size and thickness by anodic aluminum oxide templates. Compared to
    e-beam lithography, anodic aluminum oxide lithography is a low cost and simple method and provide a wide range of sizes.
    Au nanohole arrays with different diameters and thickness were prepared by vapor deposition using anodic aluminum oxide template as a mask and compared the optical properties to the results of simulation. With the increase of the diameter of the holes, the peaks affected by surface plasma resonance will have red shift phenomena. With the increase of the thickness, the peaks affected by surface plasma resonance will have blue shift phenomena.
    The refractive index sensitivity of Au nanohole arrays shows that it is more sensitive while increasing the diameters and decreasing the thickness of the nanohole arrays.

    目錄 摘要 I Abstract II 致謝 III 圖目錄 VII 表格目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧與基礎理論 3 2-1 金屬膜表面電漿子共振原理 3 2-1-1 金屬上的表面電漿模式 3 2-1-2 奈米厚度之金屬薄膜的表面電漿模式 5 2-1-3 局域性表面電漿共振 7 2-2 金屬奈米孔洞陣列之光學特性 8 2-2-1 表面電漿共振造成的額外光穿透 10 2-2-2 Rayleigh anomaly 造成的穿透最低點 12 2-3 金屬奈米洞的製備方法 13 2-3-1 電子束微影 (Electron beam lithography, EBL) 13 2-3-2 聚焦離子束製程 (Focused Ion Beam Fabrication, FIB) 14 2-3-3奈米球鏡微影 (Nanospherical-Lens lithography ) 15 2-4 陽極氧化鋁 18 2-4-1陽極氧化鋁成長機制 19 2-4-2影響陽極氧化鋁成長之參數 22 2-5 嚴格耦合波理論 25 2-5-1 TE 偏振態 25 2-5-2 TE 偏振態 28 第三章 實驗方法與流程 29 3-1 實驗流程 29 3-2 實驗藥品及材料 30 3-3 實驗設備 30 3-4 實驗步驟 31 3-4-1陽極氧化鋁模板之製備 31 3-4-2 週期性奈米粒子遮罩之製備 34 3-4-3 週期性奈米柱製備 34 3-4-4 週期性奈米洞製備 35 3-4-5 週期性金奈米洞陣列對環境折射率敏感度 36 3-5 RCWA 37 3-5-1 光柵結構設計 37 3-5-2模擬流程 38 第四章 結果與討論 39 4-1陽極氧化鋁模板 39 4-2 金奈米洞陣列於玻璃基板上 41 4-2-1 不同直徑之金奈米洞陣列 41 4-2-2 不同厚度之金奈米洞陣列 43 4-3金奈米洞陣列之光學性質 45 4-3-1 不同厚度的金奈米洞陣列之光學性質 45 4-3-2不同厚度的金奈米洞陣列之光學性質與模擬比較 46 4-3-3 不同直徑的金奈米洞陣列光學性質 49 4-3-4 不同厚度的金奈米洞陣列之光學性質與模擬比較 49 4-4 金奈米洞陣列之環境折射率敏感度 51 4-5-1不同厚度的金奈米洞陣列之環境折射率敏感度 51 4-5-2 不同直徑的金奈米洞陣列之環境折射率敏感度 54 4-5-3 不同環境折射率區段的敏感度 56 第五章 結論 58 參考文獻 59

    參考文獻

    [1] H. Vic Dannon, Gauge Institute Journal 2 (2006)
    [2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature
    391, 667 (1998)
    [3] R. E. Fontana, J. Katine, M. Rooks, Y. Kamata and K. Asakawa, Trans. Ragn. 38, 95 (2002)
    [4] T. Shimatsu, H. Kataoka and K. Mitsuzuka, Appl. Phys. 111, 07B908 (2012)
    [5] V. A. Guzenko, J. Ziegler and A. Savouchkina, Microelectron. Eng. 88, 1972 (2011)
    [6] A. Raghunathan, S. Bennett, H. O. Stamper, J. G. Hartley, A. Arceo, M. Johnson, C. Deeb, D. Patel and J. Nadeau, Microelectron. Eng. 88, 2729 (2011)
    [7] G. Y. Liu, S. Xu and Y. Qian, Acc. Chem. Res. 33, 457 (2000)
    [8] J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995)
    [9] P. Hanarp, M. Käll, and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003)
    [10] Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, J. Appl. Phys. 103, 014308 (2008)
    [11] K. Lhoste, L. Malaquin, L. Billot, A. M. Haghiri-Gosnet, Y. Chen, Microelectron. Eng. 88, 2474 (2011)
    [12] S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, ACSNano 5, 897 (2011)
    [13] M. S. Sander and L. S. Tan, Adv. Funct. Mater. 13, 393 (2003)
    [14] A. Eftekhari, Nanostructured Materials in Electrochemistry (2008).
    [15] R. W. Wood, Philos. Mag. 4, 396 (1902)
    [16] U. Fano, J. Opt. Soc. Am. 31, 213 (1941)
    [17] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965)
    [18] Michael S., Jean-Pol V., Jean-Marie V., Phys. Rev. B 67, 085415 (2003)
    [19] K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)
    [20] A. V. Zayats and I. I. Smolyaninov, J. Opt. A: Pure Appl. Opt. 5, S16 (2003)
    [21] H. Raether, Physics of Thin Film : Advances in Research and Development 9, 152 (1976).
    [22] 邱國斌、蔡定平,物理雙月刊(廿八卷二期)(2006)
    [23] R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia and L. Wang, Solid State Commun., 145, 23 (2008)
    [24] C. Genet, T. W. Ebbesen, Nature, 445, 39 (2007)
    [25] S. H. Chang and S. K. Gray, OPTICS EXPRESS 13, 3150 (2005)
    [26] H. F. Ghaemi, Tineke Thio, and D. E. Grupp, Phys. Rev. B 58, no. 11, 6779 (1998)
    [27] X. Zhang, Z. Li, S. Ye, S. Wu, J. Zhang, L. Cui, A. Li, T. Wang, S. Li and B. Yang, Mater. Chem. 22, 8903 (2012)
    [28] S. Chang and S. K. Gray, Opt. Express, 13, 3150 (2005)
    [29] S. A. Darmanyan and A. V. Zayats, Phys. Rev. B 67, 035424 (2003)
    [30] M. Sarrazin and J. P. Vigneron, Phys. Optics 38, 27 (2007)
    [31] Y. C. Chang, S.C. Lu, H.C. Chung, S. M. Wang, T. D. Tsai and T. F. Guo, Scientific Reports 3, 1 (2013)
    [32] https://en.wikipedia.org/wiki/Electron-beam_lithography
    [33] M. Najiminaini, F. Vasefi, B. Kaminska and J. J. L. Carson, Proc. of SPIE 7911, 791117-1 (2012)
    [34] https://en.wikipedia.org/wiki/Focused_ion_beam
    [35] R. Gordon and M. Hughes, Nano Letters 5, 1243 (2005)
    [36] J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553, (1995)
    [37] Y. C. Chang, H. C. Chung, S. C. Lu and T. F. Guo, Nanotechnology, 24, 095302 (2013)
    [38] Peng Zheng, Scott K. Cushing, Savan Suri and Nianqiang Wu, Chem. Phys. 10 (2015)
    [39] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996)
    [40] H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126 (1996)
    [41] Y. Lei, W. Cai, G. Wilde, Prog. Mater Sci. 52, 465 (2007)
    [42] Y. Lei, and W.-K.Chim, Chem. Mater. 17, 580 (2005)
    [43] G. E. Thompson and G. C. Wood, In Treatise on Materials Science and Technology, (ed. J.C. Scully), Academic Press New York 23, 205 (1983)
    [44] Y. Kanamori, K. Hane, H. Sai and H. Yugami, Appl. Phys. Lett. 78, 142 (2001)
    [45] H. J. Her, J. M. Kim and J. Kim, NEMS. 2nd IEEE International Conference, 788. (2007)
    [46] J. M. Moon, A. Wei, J. Phys. Chem. B 109, 23336 (2005)
    [47] A. Hajiaboli, M. Kahrizi and V. V. Truong, J. Phys. D: Appl. Phys. 45, 485105 (2012)

    QR CODE
    :::