| 研究生: |
林韋邑 Wei-Yi Lin |
|---|---|
| 論文名稱: |
深太空輻射探測儀酬載之飛行軟體設計、整測與驗證 Flight Software Design, Testing and Verification of Deep Space Radiation Probe |
| 指導教授: |
張起維
Loren Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 深太空 、太空輻射 、酬載 、飛行軟體 、NAND 快閃記憶體 、輻射感測器 |
| 外文關鍵詞: | Deep Space, Space Radiation, Payload, Flight Software, NAND Flash, Radiation Sensor |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於近年來各國政府及民間企業開始發展越來越多重返月球或是其他深太空之衛星計畫 [深太空通常指低地球軌道 (LEO,離地約 300 至 2000 公里) 以外之區域],並且隨之增加的還有前往深太空的共乘 (Rideshare) 機會,但若要將衛星或酬載發射至深太空環境執行任務就必須要克服各種嚴苛的環境條件,例如更強烈的游離輻射量和高能粒子、更極端的溫度變化以及有限的資料下傳量和下傳速度。
為此國立中央大學開始進行登月科學酬載之研發,並最終設計出深太空輻射探測儀 (Deep Space Radiation Probe,簡稱 DSRP),其技術是沿用同樣由國立中央大學所自主研發之 3U 立方衛星 IDEASSat。DSRP 預計於 2024 年 Q4 搭載於日本民間企業 ispace 所開發之 HAKUTO-R Mission 2 登月艇一同發射至月球。在任務期間 DSRP 會透過輻射劑量儀和記憶體元件,量測地球與月球之間區域、月球軌道和月球表面的游離輻射劑量、劑量率和單粒子翻轉 (SEU) 率之測量。並且藉由此次任務所蒐集的輻射相關數據,希望有助於未來的深太空衛星航電或是酬載之發展,同時也進一步了解深太空環境及月球周遭的游離輻射環境。
本論文主要以介紹 DSRP 之飛行軟體設計為主,其中包括模式運作、儲存空間配置、軟體架構、指令和封包格式。另外,為了使DSRP盡可能的克服深太空中的各種輻射效應,本論文也將介紹針對各種輻射效應所進行的實際測試結果及結果討論。
In recent years, governments and private companies worldwide have been increasingly developing satellite missions to return to the Moon or explore other deep space area [deep
space typically refers to area beyond Low Earth Orbit (LEO, which is 300 to 2,000 kilometers above Earth)]. This has led to a rise in rideshare opportunities for deep space missions. However, launching satellites or payloads into deep space environments for mission execution presents several challenges, including more intense ionizing radiation levels and high-energy particles, more extreme temperature variations, and limited data downlink capacity and speed.
To address these challenges, the National Central University (NCU) embarked on the development of a lunar science payload, resulting in the Deep Space Radiation Probe (DSRP).
The DSRP technology builds upon NCU's previous experience with the 3U cubesat IDEASSat. The DSRP is scheduled to launch to the Moon in Q4 of 2024 aboard the HAKUTO-R Mission 2 lunar lander developed by the Japanese private company ispace. During the mission, the DSRP will measure ionizing radiation dose, dose rate, and single event upset (SEU) rate in the Earth-Moon region, lunar orbit, and on the lunar surface using radiation dosimeters and memory components. The radiation data collected during this mission is expected to aid in the development of future deep space satellite avionics or payloads and further our understanding of the deep space environment and the ionizing radiation environment around the Moon.
This paper will focuses on the flight software design of the DSRP, including mode operation, storage space allocation, software architecture, and command and packet formats. Additionally, to enable the DSRP to withstand various radiation effects in deep space as much as possible, this thesis also presents the results of actual tests conducted for various radiation effects and a discussion of the results.
[1] “51 U.S.C 10101 -National and Commercial Space Programs, Subtitle I-General, Chapter 101-Definitions”, United States Code, Office of Law Revision Council, U. S. House of Representatives, retrieved January 5, 2023.
[2] L. C. Chang et al., “The Deep Space Radiation Probe: Development of a first lunar science payload for space environment studies and capacity building”, Advances in Space Research (AISR), May, 2024. https://doi.org/10.1016/j.asr.2024.05.032
[3] 黃楓台、林俊良, “太空輻射對衛星任務影響及因應之道”, November, 2020.
[4] “Magnetosphere”, Wiki Pedia. https://en.wikipedia.org/wiki/Magnetosphere
[5] “范艾倫輻射帶”, Wiki Pedia. https://zh.wikipedia.org/zh-tw/%E8%8C%83%E8%89%BE%E4%BC%A6%E8%BE%90%E5%B0%84%E5%B8%A6
[6] “太陽現象”, Wiki Pedia. https://zh.wikipedia.org/zh-tw/%E5%A4%AA%E9%99%BD%E7%8F%BE%E8%B1%A1
[7] “宇宙線”, Wiki Pedia. https://zh.wikipedia.org/zh-tw/%E5%AE%87%E5%AE%99%E7%B7%9A
[8] Marc Poizat, “TID Total Ionizing Dose”. https://indico.cern.ch/event/635099/contributions/2570674/attachments/1456398/2249969/Radiation_Effects_and_RHA_ESA_Course_9-10_May_2017_TID_MP_FINAL_WIN.pdf
[9] Josh Pritts, “Basic Mechanisms: Total Ionizing Dose”, June 10, 2019. https://uspas.fnal.gov/materials/19NewMexico/Radiation/lecture_6.pdf
[10] Texas Instruments, “In depth topic: Understanding Total Ionizing Dose (TID)”, June 6, 2023. https://www.youtube.com/watch?v=7y3uw_hVBoY&t=5s&ab_channel=TexasInstruments
[11] Michael Campola, “Total Ionizing Dose (TID) Effects”, March 11, 2021. https://radhome.gsfc.nasa.gov/radhome/tid.htm
[12] Jonathan Harris, “A Quick Overview of Radiation Effects – Single Event Effects”, January 25, 2018. https://www.planetanalog.com/a-quick-overview-of-radiation-effects-single-event-effects/
[13] Manju Maheve, “Understanding The Impact Of Single Event Effects (SEE) On System Safety”. https://asqrrd.org/wp-content/uploads/2022/03/ASQ-webinar_SEE-Manju-Maheve.pdf#:~:text=TYPES%20OF%20SEE%20Single%20Event%20Effects%20%28SEE%29%20are,Event%20Transient%20%28SET%29%20%26%20Single%20Event%20Functional%20Interrupt
[14] F. W. Sexton, “Destructive single-event effects in semiconductor devices and ICs”, in IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 603-621, June 2003, doi: 10.1109/TNS.2003.813137. https://ieeexplore.ieee.org/document/1208579
[15] Christopher A. Grome, Wei Ji, “A Brief Review of Single Event Burnout Failure Mechanisms and Design Tolerances of Silicon Carbide MOSFETs”. https://arxiv.org/pdf/2310.06184
[16] Media ATN, “Displacement Damage Testing”. https://wpo-altertechnology.com/displacement-damage-testing/
[17] Richard H. Maurer et al., “Harsh Environments: Space Radiation Environment, Effects, and Mitigation”.
[18] ISPACE, “Missions”. https://ispace-inc.com/missions
[19] 侯凱傑, “Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證”, National Central University, 2023.
[20] Microsemi, SmartFusion2 SoC FPGA Product Brief. PB0115.
[21] Varadis, Varadis RADFET VT01.
[22] Varadis, Technical Data VT 01 RADFET Readout Moudle. RM-VT01-A, May, 2023.
[23] ISPACE, Mission General Electrical Interface Requirement Definition for Payloads. M2-ICD-LL-00701.
[24] Loren C. Chang et.al, DSRP-ICD Issue 01 Revision 34, November 17, 2023.
[25] “CO-60照射場”, 國立清華大學. https://isotope.site.nthu.edu.tw/p/405-1249-150482,c14716.php
[26] T. -Y. Hsiao et al., “Proton FLASH Irradiation Platform for Small Animal Setup at Chang Gung Memorial Hospital”, in IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 8, no. 1, pp. 88-94, Jan. 2024, doi: 10.1109/TRPMS.2023.3319954.1 https://ieeexplore.ieee.org/document/10265192