| 研究生: |
吳惠琦 huei-chi Wu |
|---|---|
| 論文名稱: |
探討溫度及剪切力對Actinoplanes sp.生產acarbose 之發酵影響 |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | acarbose 、放線菌 、溫度 |
| 外文關鍵詞: | acarbose, Actinoplanes sp, temperature |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放線菌廣泛用於現今製藥抗生素,我們知道藉由Actinoplanes sp.生產acarbose,目前此藥物被一些有糖尿病第二型病人所使用,坊間也有用於在減重方面,不過成效還需更多的研究報告證實。
一般認為培養溫度是影響菌體生長的主要因素。因此,大部分之研究是在最適合生長溫度下進行培養。但是文獻資料並沒有針對不同培養溫度及剪切力對發酵液的滲透壓與acarbose生成做相關研究。而在放線菌發酵中,培養液acarbose量是相當重要,具有治療糖尿病患者,我們利用發酵技術,如溫度或剪切力效應來增加菌體生長和acarbose生成,值得一提的是滲透壓也是作為探討之指標。
本研究以攪拌式反應器來進行深層培養放線菌,利用生物技術發酵生產醣類醫藥原料acarbose。Acarbose主要為Glucobay(商品名)主成份,用於治療第二型糖尿病患者。Actinoplanes sp. 是目前研究發酵生產acarbose的主要菌種之一,在實驗中,我們探討了使用攪拌式發酵槽,在不同溫度(24℃、26℃、28℃)時,對放線菌生長和acarbose生成所造成的影響,結果有如下發現:
1.在不同maltose濃度下,於搖瓶液態發酵中,可證實有最適當滲透壓範圍(150~250 mOsm/kg),另外於發酵槽液態發酵中,可知道適當滲透壓範圍(400~450mOsm/kg),同時對於不同溫度(24℃和28℃)隨時間改變的平均滲透壓範圍(350~450 mOsm/kg)。
2.在不同培養溫度下,於發酵槽發酵中,發現在適當溫度範圍中(24℃和28℃)對acarbose生成和菌體生成等有一最適分配,在28℃時,菌體轉化率Yx/s = 0.1545、Yp/s=0.1342、Yp/x=0.79,在此溫度下是acarbose生成較多,但菌體量在80hr以後逐漸下降。當溫度為24℃時(Yp/x=0.3532),放線菌菌體維持穩定。
3.不同發酵槽對放線菌液態發酵的影響,在放線菌液態發酵以4L攪拌式發酵槽比1.5L攪拌式有利。而在連續通氣和不連續通氣(如搖瓶)條件下,因為搖瓶實驗(150rpm、28℃)中由於沒有足夠的氧氣,以相同的發酵時間,在發酵過程中,使每一克菌絲體所能生產acarbose產量(Yp/x=0.4453)比在連續通氣中攪拌式(Yp/x=0.79)發酵槽低。
4.了解acarbose生成穩定之問題。
5.於實驗操作在溫度28 ℃下,有最佳之轉化率。
參考文獻
Balfour, J. A.; McTavish, D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993, 46, 1025-1054.
Bergey, D. H , Holt, John G.;Krieg, Noel. R. Bergey’s Manual Of Systematic Bacteriology; 1989, 2418-2428.
Beunink, J.; Schedel, M.; Steiner, U. Osmotically controlled fermentation process for the preparation of acarbose. U.S.Patent 6130072, 2000.
Bock, K. ; H. Prenrsen, The solution conformation of acarbose. Carbohydr. Res.1984, 132:142~149.
Brogard, J. M.; Willemin, B.; Blickle, J. F.; Lamalle, A. M.; Stahl, A. Alpha-glucosidase inhibitors: a new therapeutic approach in diabetes and functional hypoglycemia. Rev. Med. Interne. 1989, 10, 365-374.
Choi, B. T. ; Shin C. S., Reduced formation of byproduct component c in acarbose fermentation by Actinoplanes sp. CKD485-16.Biotechnol. Prog. 2003, 19:1677-1682
Cherkaoui S., Y. Daali, P. Christen, J. -L. Veuthey. Development and validation of liquid chromatography and capillary electrophoresis methods for acarbose determination in pharmaceutical tablets. Journal of Pharmaceutical and Biomedical Analysis, 1998,18,729-735.
Crueger; A.; Piepersberg, W.; Distler, J.; Stratmann, A. Acarbose biosynthesis genes from Actinoplanes sp., process for the isolation thereof and the use thereof. U.S. Patent 5,753,501, 1998.
Degwert, U.; Van, H. R.; Pape, H.; Herrold, R. E.; Beale, J. M.; Keller, P. J.; Lee, J. P.; Floss, H. G. Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose: Valienamine, a m-C7N unit not derived from the shikimate pathway. J. Antibiot. 1987, 40, 855-61.
Hemker, M.; Stratmann, A.; Goeke, K.; Schroder, W.; Lenz, J.; Piepersberg, W.; Pape, H. Identification, cloning, expression, and characterization of the extracellular acarbosemodifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50. J. Bacteriol. 2001, 183, 4484-4492.
Lee, S. S.; Sauerbrei, B.; Niggemann, J.; Egelkrout, E. Biosynthetic studies on the α-glucosidase inhibitor acarbose in Actinoplanes sp.: Source of the maltose unit. J. Antibiot., 1997,50:11, 954-961.
Lee, S. S.; Egelkrout, E. Biosynthetic studies on the α-glucosidase
inhibitor acarbose in Actinoplanes sp.: Glutamate is the primary source of the nitrogen in acarbose. J. Antibiot. 1998, 51, 225-227.
Luedeking, R.;Piret, EL. A kinetic study of the lactic acid fermentation: Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng., 1959,1, 363-394
Rauenbusch E., Highly pure acarbose. U.S.Patent 4904769, 1990
Rheinheimer, G.,”The Influence of Environmental Factors on the Development of Microorganisms.”, Rheinheimer G. eds., Aquatic Microbiology 4th ed., pp.111-147,Baffins Lane, 1992, England.
Shuler, M.L.; Kargi, F. Bioprocesses engineering: basic concepts, 1992,50
Simeon, G. B.; Taifo, M.; Floss, H. G. Biosynthetic studies on the α-glucosidase inhibitor acarbose: the chemical synthesis of dTDP-4-amino-4,6-dideoxy-α-D-glucose. Carbohydr. Res. 2002, 337, 297-304.
Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D. D.; Wingender W. Chemistry and biochemistry of α-glucosidase inhibitors. Angew. Chem., Int. Ed. 1981, 20, 744-761.
Wehmeier U.F., Piepersberg W., Biotechnology and molecular biology of α-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol. 2004,63, 613-625
William L. C. and Wolfe S. R. A process for the purification of acarbose, WO9907720.1999
Youssef Daali, Samir Cherkaoui, Xavier Cahours, Emmanuel Varesio, Jean-Luc Veuthey. High performance liquid chromatograpy of acarbose and its metabolite on porous graphitic carbon column, J.Sep. Sci. 2002, 25,280-284
Zhang, C. S.; Stratmann, A.; Block, O.; Bruckner, R.; Podeschwa, M.; Altenbach, H. J.; Wehmeier, U. F.; Piepersberg, W. Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J. Biol. Chem. 2002, 277, 22853-22862.
Zhang, C. S.; Podeschwa, M.; Altenbach, H. J.; Piepersberg, W.; Wehmeier, U. F. The acarbose-biosynthetic enzyme AcbO from Actinoplanes sp. SE 50/110 is a 2-epi-5-epi-valiolone-7-phosphate 2-epimerase. FEBS Lett. 2003, 540, 47-52.
許元勳, 放線菌在生物產業之應用, 生物產業, 1997,8(2):15-19。
林成新, Acarbose, 藥物介紹,10(10)。
王進琦,基礎微生物學,1988
高蕙茹, 新一代口服降血糖藥物--Acarbose, 藥學雜誌, 1999, 15:2 59,97-100