| 研究生: |
陳亮頤 Liang-Yi Chen |
|---|---|
| 論文名稱: |
整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構 An Open Internet of Things Architecture Integrating oneM2M and OGC SensorThings API Standards |
| 指導教授: |
黃智遠
Chih-Yuan Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 物聯網 、oneM2M 、SensorThings API 、開放標準 、互操作性 |
| 外文關鍵詞: | Internet of Things, oneM2M, SensorThings API, open standard, interoperability |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來物聯網(Internet of Things, IoT)的相關設備能夠支援感測(Sensing)能力以監控周圍環境的各項變化,同時也提供了制動(Tasking)能力讓使用者能夠有效率的實現遠端控制,讓越來越多領域被物聯網的概念所吸引。許多物聯網的相關應用已經被提出,例如工業4.0、車聯網、智慧電網、智慧醫療、精準農業以及智慧城市等。一個物聯網的架構通常包含了設備層、閘道器層、網路服務層以及應用層。然而大多數現有的系統使用私有的概念模型、編碼以及服務協定來建構自家的垂直物聯網系統,這將產生異質性(heterogeneity)問題且會阻礙不同的物聯網系統進行資料交流以及合作。為了解決這個問題,讓各個物聯網系統遵守一套國際開放標準是必須的。然而各個標準也都針對他們所關注的社群、使用者以及物聯網階層提出適合的物聯網標準服務,因此我們嘗試整合現有的物聯網標準、利用不同標準的優點來建構完整的物聯網架構。在此篇研究中,我們的目標將整合oneM2M標準以及開放地理空間聯盟(Open Geospatial Consortium, OGC) SensorThings API (STA)標準。oneM2M建立的共通服務層能夠為連接的設備提供管理服務,而SensorThings API則提供了具完整語意定義的物聯網資料模型以及彈性的網路服務查詢介面。為了達成兩個標準的整合,我們在oneM2M上提出了SensorThings API資料模型文件(STA-oneM2M profile)。這個資料模型文件有助於組成標準化且富含語意的物聯網資料模型,讓設備之間能夠互相傳遞與理解資訊並且解決oneM2M與SensorThings API之間的資訊交流。總體來說,這個整合系統能夠達成開放且具互操作性的物聯網架構,也展現了不同物聯網標準整合的優勢。
In recent years, the concept of Internet of Things (IoT) attracts increasing attention from various fields as IoT devices support sensing capabilities to continuously monitor device status and surrounding environment as well as support tasking capabilities to achieve efficient and automatic remote control. Many potential IoT applications have been proposed, such as industry 4.0, connected vehicle, smart electricity grid, e-health, precision agriculture, and smart city. However, while an IoT architecture usually includes device layer, intermediate gateway layer, web service layer, and application layer, most existing systems are using proprietary solutions that follow different conceptual models, encodings, and service protocols. These proprietary systems cause heterogeneity issues that impede them to interoperate with other systems. To address this issue, following international open standards is necessary. However, while different standards usually aim to support different functionalities and use cases, communities focusing on different layers may already have their preferred standard solutions. Therefore, we argue that one of the solutions to achieve a comprehensive IoT architecture is by integrating existing standards to harness their advantages. In this study, we aim at integrating the oneM2M standard, which establishes a common service layer providing management functions for connected IoT devices, and the Open Geospatial Consortium (OGC) SensorThings API standard, which focuses on defining a complete IoT data model and flexible web service query interfaces. To achieve the integration, we propose a SensorThings API data model profile on oneM2M. This data model profile helps compose standardized and semantic-rich IoT data that can facilitate information exchange between devices and help establish automatic communication between oneM2M and SensorThings API standard solutions. In general, this integrated system helps achieve an open and interoperable IoT architecture, which can consequently facilitate IoT data transmission and integration.
1. ITU Telecommunication Standardization Sector, “Overview of Internet of Things”, ITU-T: Geneva, Switzerland, 2012, https://www.itu.int/rec/T-REC-Y.2060-201206-I.
2. Soliman, M.; Abiodun, T.; Hamouda, T.; Zhou, J.; Lung, C.H., “Smart home: Integrating internet of things with web services and cloud computing”, IEEE International Conference on Cloud Computing Technology and Science, Bristol, UK, 2-5 December 2013.
3. Pescosolido, L.; Berta, R.; Scalise, L.; Revel, G.M.; Gloria, A.D.; Orlandi, G., “An IoT-inspired Cloud-based Web Service Architecture for e-Health Applications”, IEEE International Smart Cities Conference, Trento, Italy, 12-15 September 2016.
4. Guerrero-ibanez, J. A.; Zeadally, S.; Contreras-Castillo, J., “Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies”, IEEE Wireless Communications, vol. 22, no. 6, pp. 122–128, December 2015.
5. Bi, Z.; Xu, L.D.; Wang, C., “Internet of things for enterprise systems of modern manufacturing”, IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1537–1546, May 2014.
6. Chiang, M. and Zhang, T. “Fog and IoT: An Overview of Research Opportunities”, IEEE Internet of Things Journal, vol.3, issue.6, pp. 854-864, December 2016.
7. Shi, W. and Dustdar, S., “The Promise of Edge Computing”, Computer, vol.49, issue.5, pp. 78-81, May 2016.
8. Darmois, E. and Elloumi, O., M2M Communications: A Systems Approach, Boswarthick, D., et al, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2012.
9. Huang, C. Y. and Wu, C. H., “A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability”, Sensors, 16(9), 1395, August 2016.
10. Liang, S.; Khalafbeigi, T., “OGC® SensorThings API Part2 – Tasking Core”, Open Geospatial Consortium: Wayland, MA, USA, 2019, https://www.oceanbestpractices.net/handle/11329/913.
11. Xiao, G.; Guo, J.; Xu, L.D.; Gong, Z., “User Interoperability With Heterogeneous IoT Devices Through Transformation”, IEEE Transactions on Industrial Informatics, vol.10, issue.2, pp. 1486-1496, May 2014.
12. Sowe, S.K.; Kimata, T.; Dong, M.; Zettsu, K., “Managing Heterogeneous Sensor Data on a Big Data Platform: IoT Services for Data-Intensive Science”, IEEE 38th International Computer Software and Applications Conference Workshops, Vasteras, Sweden, 21-25 July 2014.
13. Desai, P.; Sheth, A.; Anantharam, P., “Semantic Gateway as a Service Architecture for IoT Interoperability”, IEEE International Conference on Mobile Services, New York, USA, 27 June-2 July 2015.
14. oneM2M-TS-0001, oneM2M Functional Architecture Specification v2.10.0, Aug. 2016, http://www.onem2m.org/.
15. Liang, S.; Huang, C.Y.; Khalafbeigi, T., “OGC® SensorThings API Part1: Sensing”, Open Geospatial Consortium: Wayland, MA, USA, 2016, https://docs.opengeospatial.org/is/15-078r6/15-078r6.html.
16. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J., “Toward a Standardized Common M2M Service Layer Platform: Introduction to OneM2M”, IEEE Wireless Communications, vol.21, no.3, pp. 20-26, June 2014.
17. Cox, S., “Observations and Measurements”, In Open Geospatial Consortium Best Practices Document, Open Geospatial Consortium: Wayland, MA, USA, 2006, https://www.opengeospatial.org/standards/om.
18. Pizzot, M.; Handl, R.; Zurmuehl, M., “Information technology Open data protocol (OData) v4.0 Part 1: Core”, OAISI Open Data Protocol (OData) TC, 2016, https://www.iso.org/standard/69208.html.
19. AWS IoT Core, https://aws.amazon.com/iot-core/.
20. Azure IoT, https://azure.microsoft.com/en-us/overview/iot/.
21. OPEN CONNECTIVITY FOUNDATION (OCF), https://openconnectivity.org/.
22. Industrial Internet Consortium, https://www.iiconsortium.org/.
23. Thread Group, https://www.threadgroup.org/.
24. HomeKit – Apple, https://www.apple.com/ca/ios/home/accessories/.
25. Bröring, A.; Stasch, C.; Echterhoff, J., “OGC® Sensor Observation Service Interface Standard”, Open Geospatial Consortium Interface Standard: Wayland, MA, USA, 2012, https://www.opengeospatial.org/standards/sos.
26. Huang, C. Y. and Chen, H.H., “An Automatic Embedded Device Registration Procedure Based on the OGC SensorThings API”, Sensors, vol.19, issue.3, pp. 1-27, January 2019.
27. Lee, J.C.; Kim, H.J.; Kim, S.H., “Bridging OCF devices to legacy IoT devices”, International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, 18-80 October 2017.
28. Dave, B.; Buda, A.; Nurminen, A.; Främling, K., “A framework for integrating BIM and IoT through open standards”, Automation in Construction, vol. 95, pp. 35-45, August 2018.
29. Wu, C.W.; Lin, F.J.; Wang, C.H.; Chang, N., “OneM2M-based IoT protocol integration”, IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki, Finland, 18-20 September 2017.
30. Yun, J.; Teja, R.C.; Chen, N.; Sung, N.M.; Kim, J., “Interworking of oneM2M-based IoT systems and legacy systems for consumer products”, International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, 19-21 October 2016.
31. Klinpratum, T.; Saivichit, C.; Elmangoush, A.; Magedanz, T. “Performance of Interworking Proxy for Interconnecting IEEE1888 Standard at ETSI M2M Platforms”, Applied Mechanics and Materials, vol. 781, pp. 141-144, August 2015.
32. Huang, C. Y. and Liang, S., “A sensor data mediator bridging the OGC Sensor Observation Service (SOS) and the OASIS Open Data Protocol (OData)”, Annals of GIS, vol.20, no.4, pp. 279-293, October 2014.
33. oneM2M-TR-0025, oneM2M Application Developer Guide v1.0.0, Mar. 2016, http://www.onem2m.org/.
34. oneM2M-TR-0035, oneM2M Developer Guide of Device Management, Aug. 2017, http://www.onem2m.org/.