| 研究生: |
許谷榕 KU-JUNG HSU |
|---|---|
| 論文名稱: |
Calderon-Zygmund 算子在乘積空間上的 H^p(R^n × R^m) 有界性 H^p(R^n × R^m) boundedness of Calderon-Zygmund operators |
| 指導教授: |
李明憶
Ming-Yi Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 乘積空間 、奇異積分算子 、有界性 、哈地空間 |
| 外文關鍵詞: | Hardy spaces, singular integral operators, product space, boundedness |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的,是去討論乘積空間上的 H^p( R^n × R^m) 有界性。在這篇論文裡,應用了 Calderon 表示定理、向量值的奇異積分、Littlewood-Paley 理論、Fefferman 的矩形原子分解和 Journe 的覆蓋引理等方法去證明 T 在 H^p(R^n × R^m),max{n/(n+ε),m/(m+ε)}<p<= 1 上有界性的充分必要條件為 T*_{1}(1)=T*_{2}(1)=0,其中 ε 是關於 T 的算子核的正則指數。
The main purpose of this paper is to discuss H^p(R^n × R^m) boundedness of Calderon-Zygmund operators. We apply vector-valued singular integral, Calderon''s identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman''s rectangle atomic decomposition and Journe''s covering lemma to show that T is bounded on product H^p(R^n × R^m) for max{n/(n+ε),m/(m+ε)} <p<=1 if and only if T*_{1}(1)=T*_{2}(1)=0, where ε is the regularity exponent of the kernel of T.
[B] M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133(2005) 3535-3542.
[C] L. Carleson, A counterexample for measures bounded on H^p for the bi-disc, Mittag Leffler Report No. 7(1974).
[CF] S. Y. Chang and R. Fefferman, A continuous version of duality of H^1 with BMO on bi-disc, Ann. of Math. 112(1980) 179-201.
[F1] R. Fefferman, Calderon-Zygmund theory for product domain-H^p theory, Proc. Nat. Acad. Sci. U. S. A. 83(1986) 840-843.
[F2] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126(1987) 109-130.
[FS] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45(1982) 117-143.
[GR] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam(1985).
[GS] R. F. Gundy and E. M. Stein, H^p theory for the poly-disc, Proc. Nat. Acad. Sci. U. S. A. 76(1979) 1026-1029.
[HS] Y. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property and the Tb theorem, Rev. Mat. Iberoamericana 6(1990) 17-41.
[J] J. L. Journe, Calderon-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1(1985) 55-91.
[MM] M. P. Malliavin and P. Malliavin, Integrales de Lusin-Calderon pour les fonctions biharmoniques, Bull. Sci. Math.
101(1977) 357-384.
[S] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ(1993).