| 研究生: |
邱奕翔 Yi-Hsiang Chiu |
|---|---|
| 論文名稱: |
循環式鋰離子電池溫控模組之模擬分析 Analysis of circulating lithium-ion battery temperature control module |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 鋰離子電池模組 、熱管理 、溫控 、循環 |
| 外文關鍵詞: | Lithium ion battery module, Thermal management, Temperature control, Circulating |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立一循環式鋰離子電池溫控模組之模型。透過商用軟體COMSOL Multiphysics,根據理論計算出鋰離子電池放電時所產生之熱源,並取其平均值應用於電池模組中進行模擬分析。文中分析模組不同的環境溫度、前導流設計、發泡材參數、內風扇速度以及使用鋁發泡材取代導流版與加熱器鰭片時,模組所需之加熱時間、電池溫度及流場均勻性。
結果顯示,當進入電池前之流場均勻性越好,模組需要的加溫時間越短;前導流區域有四片導流板時,進入電池之流場均勻性較好,電池所需之加溫時間較短;鋁發泡材之孔隙率和滲透率分別在0.8和1×10-7 m2時,有較好的熱傳能力;內風扇速度在2 m/s時,雖然所需之加熱時間短,但會增加表面熱通量之損失,使得加熱器需不斷的啟動以維持溫度,且風扇也需較大的功率來驅動流體;使用鋁發泡材取代導流板與加熱器鰭片時,以圓弧形導流之斜角式凸出發泡材模組在進入電池前之流場均勻性最好,電池所需之加溫時間最短。此模組亦可在高溫或低溫等極端環境下使用,且皆符合電池安全之工作溫度範圍內。
關鍵字:鋰離子電池模組,熱管理,溫控,循環。
Several designs of thermal control module for circulating lithium-ion battery are proposed and analyzed in this study. Commercial software COMSOL Multiphysics is used. In this research, the heating time, ambience temperature, different diversion design in front of the module, different parameter of metal foam, internal fan velocity and use the metal foam to substitute the deflector and the fin of heater is investigated.
Results show that, due to the flow field into the battery is more uniform, the module which is consist of four deflectors have the less heating time. When the porosity and permeability of metal foam is 0.8 and 1E-7 m2 have the better heat transfer effect, respectively. Although the velocity of internal fan is 2 m/s which have less heating time, more heat loss from surface heat flux and make the heater have to work to maintain the module temperature. The best design is arc shape combine bevel angle metal foam module which have the best uniform flow field and least heating when we use the metal foam to substitute the deflector and the fin of heater. This module also can work at high and low temperature in safe operating limit.
Keywords: Lithium ion battery module, Thermal management, Temperature control, Circulating
[1] 黃可龍、王兆翔和劉素琴,「鋰離子電池原理與技術」,五南,初版,2010
[2] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell” Electrochemical Society, Vol. 140, No. 6, 1993.
[3] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion Cell,” Electrochemical Society, Vol. 141, No. 1, 1994.
[4] M. Doyle, and J. Newman, “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells,” Electrochemical Society, Vol. 143, No. 6, 1996.
[5] R. Darling, and J. Newman, “Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes,” Electrochemical Society, Vol. 144, No. 12, 1997.
[6] R. Darling, and J. Newman, “Modeling Side Reactions in Composite LiMn2O4 Electrodes,” Electrochemical Society, Vol. 145, No. 3, 1998.
[7] P. Ramadass, B. Haran, R. White, and B. N. Popov, “Mathematical modeling of the capacity fade of Li-ion cells,” Power Sources, Vol. 123, pp. 230-240, 2003.
[8] S. Kawano, and F. Nishimura, “Numerical Analysis of Discharge Characteristics in Lithium Ion Batteries Using Multiphase Fluids Model,” Applied Physics, Vol. 44, pp. 4218-4228, 2005.
[9] D. Danilov, and P. H. L. Notten, “Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries,” Electrochimica Acta, Vol. 53(17), pp. 5569-5578, 2008.
[10] V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions,” Electrochemical Society, Vol. 156, pp. 260-271, 2009.
[11] S. Golmon, K. Maute, and M. L. Dunn, “Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries,” Computers & Structures, Vol. 87, pp. 1567-1579, 2013
[12] E. Martínez-Rosas, R. Vasquez-Medrano, and A. Flores-Tlacuahuac, “Modeling and simulation of lithium-ion batteries,” Computers & Chemical Engineering, Vol. 35, pp. 1937-1948, 2011.
[13] D. Bernardi, E. Pawlikowski, and J. Newman, “A General Energy Balance for Battery Systems,” Electrochemical Society, Vol. 132, No. 1, 1985.
[14] K. E. Thomas, C. Bogatu, and J. Newman, “Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide,” Electrochemical Society, Vol. 148, pp. 570-575, 2001.
[15] C. Y. Wang, and V. Srinivasan, “Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling,” Power Sources, Vol. 110, pp. 367-376, 2002.
[16] P. M. Gomadam, R. E. White, and J. W. Weidner, “Modeling Heat Conduction in Spiral Geometries,” Electrochemical Society, Vol. 150, pp. 1339-1345, 2003.
[17] S. C. Chen, Y. Y. Wang, and C. C. Wan, “Thermal Analysis of Spirally Wound Lithium Batteries,” Electrochemical Society, Vol. 153(4), pp. A637-A648, 2006.
[18] X. Zhang, “Thermal analysis of a cylindrical lithium-ion battery,” Electrochimica Acta, Vol. 56, pp. 1246-1255, 2011.
[19] D. H. Jeon, and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, Vol. 52, pp. 2973-2981, 2011.
[20] K. Somasundaram, E. Birgersson, and A. S. Mujumdar, “Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery,” Power Sources, Vol. 203, pp. 84-96, 2012.
[21] L. Fan, J. M. Khodadadi, and A. A. Pesaran, “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” Power Sources, Vol. 238, pp. 301-312, 2013.
[22] X. Li, F. He, and L. Ma, “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation,” Power Sources, Vol. 238, pp. 395-402, 2013.
[23] F. He, X. Li, and L. Ma, “Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells,” Heat and Mass Transfer, Vol. 72, pp. 622-629, 2014.
[24] H. Sun, and R. Dixon, “Development of cooling strategy for an air cooled lithium-ion battery pack,” Power Sources, Vol. 272, pp. 404-414, 2014.
[25] N. Nieto, L. Diaz, J. Gastelurrutia, F. Blanco, J. C. Ramos, and A. Rivas, “Novel thermal management system design methodology for power lithium-ion battery,” Power Sources, Vol. 272, pp. 291-302, 2014.
[26] R. Liu, J. Chen, J. Xun, K. Jiao, and Q. Du, “Numerical investigation of thermal behaviors in lithium-ion battery stack discharge,” Applied Energy, Vol. 132, pp. 288-297, 2014.
[27] K. Yu, X. Yang, Y. Cheng, and C. Li, “Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack,” Power Sources, Vol. 270, pp. 193-200, 2014.
[28] Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Applied Energy, Vol. 148, pp. 403-409, 2015.
[29] T. Wang, K. J. Tseng, and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Applied Thermal Engineering, Vol. 90, pp. 521-529, 2015.
[30] T. Wang, K. J. Tseng, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Applied Energy, Vol.134, pp. 229-238, 2014.
[31] Y. Ye, L. H. Saw, Y. Sho, and A. A. O. Tay, “Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging,” Applied Thermal Engineering, Vol. 86, pp. 281-291, 2015.
[32] S. K. Mohammadian, and Y. Zhang, “Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles,” Power Sources, Vol, 273, pp. 431-439, 2015.
[33] S. K. Mohammadian, S. M. Rassoulinejad-Mousavi, and Y. Zhang, “Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam,” Power Sources, Vol. 296, pp. 305-313, 2015.
[34] A.Zukauskas, and R. Ulinskas, Heat transfer in Tube Bank in Crossflow, frist ed, Hemisphere Publishing, New York, 1988.
[35] Z. Zeng, and R. Grigg, “A Criterion for Non-Darcy Flow in Porous media,” Transport in Porous Media, Vol. 63, pp. 57-69, 2006.
[36] G. P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978
[37] C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, Volume 1, 1989.
[38] Y. Saad, and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” Society for Industrial and Applied Mathematics, Vol. 7, No. 3, 1986.