跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許傑閔
Chieh-Ming Hsu
論文名稱: 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
Optical properties of InGaAs quantum dots on a GaAs multi-facet structure
指導教授: 徐子民
Tzu-Min Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 95
語文別: 中文
論文頁數: 49
中文關鍵詞: 砷化銦鎵量子點多面體微結構光激發螢光光譜
外文關鍵詞: quantum dot, InGaAs, PL, PLE, multifacets structure
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用顯微光激發螢光光譜及顯微光激螢光激發光譜來分析砷化銦鎵量子點在砷化鎵多面體結構上的光學性質。
    我們從掃瞄式電子顯微鏡知道量子點在砷化鎵多面體結構上的位置分布與砷化鎵基板上平台大小的長寬比有關,而我們利用顯微光激發螢光光譜及顯微光激螢光激發光譜來討論砷化鎵多面體結構與砷化銦鎵量子點的發光位置,另外從空間的光譜解析影像(spatial - mapping)可以發現砷化鎵多面體上不同平面的相對位置。


    We present the results of PL spectra and PLE spectra to analyze the optical properties of InGaAs QDs and multi-facets structure.
    The number and position of QDs were determined using a scanning electron microscope and the position of QDs can be controlled by the size of the mesa on a GaAs substrate. We present the emission peak of QDs and multi-facets structure by using PL spectra and PLE spectra. From the two dimensional spatial mapping, we were determined the position of the different plane on the multi-facets structure.

    目錄 摘要……………………………………………………………………….i 致謝………………………………………...…………………………....iii 目錄……………………………………………………………………....v 圖目錄…..………………………………………………………………vii 第一章 簡介…………………………………………………………..…1 第二章 基本原理………………………………………………………..3 2-1 奈米結構……………………………………………………….3 2-2 砷化鎵多面體結構…………………………………………….4 2-3 量子點成長模式……………………………………………….6 2-4 光激發螢光光譜原理………………………………………...10 2-5 光激螢光激發光譜原理……………………………………...12 第三章 樣品結構與實驗裝置…………………………………………13 3-1 樣品結構..……………………………………………….……13 3-2 砷化鎵多面體結構之SEM影像……………..………………14 3-3 顯微光激發螢光光譜實驗裝置………………..…………….19 3-4 顯微螢光激螢光激發光譜實驗裝置………...........................20 第四章 實驗結果與討論………………………………………………22 4-1多面體結構的顯微光激發螢光光譜…………………….…...22 4-2不同多面體結構平台長寬比的顯微光激發螢光光譜.……...25 4-3 空間的光譜解析強度圖……………………………………...35 4-4 不同激發光強度的顯微光激發螢光光譜…………………...40 第五章 結論……………………………………………………………45 參考文獻………………………………………………………………..47

    1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
    2. P. Gangier and I. Abram, Phys. World 16, 31 (2003).
    3. Cheol-Koo Hahn, Junichi Motohisa, Takashi Fukui, Appl. Phys. Lett. 76, 3947 (1998).
    4. Tetsuo Umeda, Kazuhide Kumakura, Junichi Motohisa, Takashi- Fukui, Physica E. 2, 714 (1998).
    5. Haiyan An, Junichi Motohisa, Appl. Phys. Lett. 77, 385 (2000).
    6. M. H. Baier, E. Pelucchi, and E. Kapon, Appl. Phys. Lett. 84, 648 (1982).
    7. M. Walther, E. Kapon, J. Christen, D. M. Hwang, R. Bhat, Appl. Phys. Lett. 60, 521 (1992).
    8. W.-H. Chang, H.-S. Chang, W.-Y. Chen, T. M. Hsu, T.-P. Hsieh, J.-I. Chyi, and N.-T. Yeh, Phys. Rev. B 84, 233302 (2005).
    9. Tung-Po Hsieh, Pei-Chin Chiu, Yu-Chuan Liu, Nien-Tze Yeh, Wen-Jeng Ho, and Jen-Inn Chyi, J. Vac. Sci. Technol. B 23, 262 (2005).
    10. Tung-Po Hsieh, Jen-Inn Chyi, Hsiang-Szu Chang, Wen-Yen Chen, Tzu Min Hsu, Wen-Hao Chang. Appl. Phys. Lett. 90, 073105 (2007).
    11. E. S. Moskalenko, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B 66, 195332 (2002).
    12. P. Finnie, M. Buchanan, C. Lacelle, A.P. Roth, J. Cry. Growth 160, 220 (1996).
    13. J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, J. Vac. Sci. Technol. B 20, 2173 (2002).
    14. J. J. Finley, A. D. Ashmore, A. Lemaitre, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, Phys. Rev. B 63, 073307 (2001).
    15. T. I. Kamins and R. S. Williams, Appl. Phys. Lett. 71, 1201, 1997.
    16. T.-P. Hsieh, H.-S. Chang, W.-Y. Chen, W.-H. Chang, T. M. Hsu, N.-T. Yeh, W.-J. Ho, P.-C. Chiu, and J.-I. Chyi, Nanotechnology 17, 512, 2006.
    17. M. López, T. Ishikawa, and Y. Nomura, Jpn. J. Appl. Phys. 32, 1051 (1993).
    18. A. Konkar, A. Madhukar, and P. Chen, Appl. Phys. Lett. 72, 220, (1998).
    19. A. Konkar, R. Heitz, T. R. Ramachandran, P. Chen, and A. Madhukar, J. Vac. Sci. Technol. B 16, 1334, (1998).
    20. R. Zhang, R. Tsui, K. Shiralagi, and H. Goronkin, Jpn. J. Appl. Phys. Part 1, 38, 455, (1999).
    21. T. Fukui, S. Ando, Y. Tokura and T. Toriyama, Appl. Phys. Lett. 58, 2018, (1991).
    22. K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui and H. Hasegawa, Jpn. J. Appl. Phys. 34, 4387, (1995).
    23. K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. M. Petroff,
    and G. H. Dohler, Phys. Rev. B 54, 11346, 1996.
    24. E. S. Moskalenko, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V.
    Schoenfeld, J. M. Garsia, and P. M. Petroff, Phys. Rev. B 64, 085302, (2001).
    25. K. Leifer, A. Hartmann, Y. Ducommun, and E. Kapon, Appl. Phys. Lett. 77, 3923, (2000).
    26. A. Hartmann, L. Loubies, F. Reinhardt, and E. Kapon, Appl. Phys. Lett. 71, 1314, (1997).
    27. G. Biasiol, E. Martinet, R. Reinhardt, A. Gustafsson, and E. Kapon, J. Cryst. Growth 170, 600, (1997).
    28. H. Weman, E. Martinet, A. Rudra, and E. Kapon, Appl. Phys. Lett. 73, 2959, (1999).
    29. D. Chithrani, R. L. Williams, J. Lefebvre, P. J. Poole, and G. C. Aers, Appl. Phys. Lett. 84, 978, (2004).
    30. R. L. Williams, G. C. Aers, P. J. Poole, J. Lefebvre, D. Chithrani, and B. Lamontagne, J. Cryst. Growth 223, 321, (2001).
    31. J. Lefebvre, P. J. Poole, G. C. Aers, D. Chithrani, and R. L. Williams, J. Vac. Sci. Technol. B 20, 2173, (2002).
    32. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282, (2000).
    33. Arno Hartmann, Yann Ducommun, Laurent Loubies, Klaus Leifer, and Eli Kapon, Appl. Phys. Lett. 73, 2322, (1998).
    34. A. Hartmann, L. Loubies, F. Reinhardt, A. Gustafsson, A. Sadeghi, and E. Kapon, Appl. Surf. Sci. , 4793, (1997).
    35. F. Vouilloz, D. Y. Oberli, S. Wiesendanger, B. Dwir, F. Reinhardt, and E. Kapon, Phys. Status Solidi A 164, 259, (1997).
    36. Clint B. Geller, Walter Wolf, Silvia Picozzi, Alessandra Continenza, Ryoji Asahi, Wolfgang Mannstadt, Arthur J. Freeman, Erich Wimmer, Appl. Phys. Lett. 79, 368, (2001).

    QR CODE
    :::