| 研究生: |
郭于嘉 YU-JIA KUO |
|---|---|
| 論文名稱: |
熱電材料Ge0.86Sb0.08Bi0.06Te在高溫Fm3 ̅m相的聲子色散關係 |
| 指導教授: |
李文献
Wen-Hsien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 熱電材料 、高溫 、聲子色散 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
GeTe屬於p型半導體的熱電材料,也屬於一種相變材料,現階段已知的GeTe晶體形式有三種,經研究顯示當兩種元素進行雙摻雜,如Sb及Bi,由於Bi的原子半徑較Sb大,且Bi由R3m 相轉變至Fm3 ̅m比Sb 快,討論樣品Ge0.86Sb0.08Bi0.06Te相轉變溫度,何時從α相(空間群R3m)相轉變至β相(空間群Fm3 ̅m)。並利用對中子繞射的原理獲得聲子彈性散射圖討論聲子的行為模式,彈性散射是對於粒子動能不守恆;非彈性散射則是動量守恆。當我們分析中子的散射路徑及中子和物質發生作用時動量與能量的變化,藉此來分析物質的微觀結構。使用SIKA 冷中子三軸散射儀作非彈性中子散射方式來測量Ge0.86Sb0.08Bi0.06Te中的激發能量,而色散關係主要描述波在傳遞過程中,其波長、頻率、波速等關係,針對聲子激發、聲子的色散關係與色散曲線、聲子生命期、群速度及傳播長度加以分析擬合以進行討論。
由彈性散射的結果中發現在(110)625K及(200)525K後晶格常數上升速率有明顯改變,可能發生結構相轉變。而在聲子色散關係中,在(210)方向時,不同溫度下的聲子壽命則有相同上升的趨勢,反觀在(200)方向時,不同溫度下的聲子壽命則呈現下降的趨勢。而群速度及傳播長度則會與之相反。
GeTe belongs to the thermoelectric material of p-type semiconductor, and also belongs to a phase change material. There are three known crystal forms of GeTe at this stage. Studies have shown that when two elements are double-doped, such as Sb and Bi, the atomic radius of Bi is relatively small. Sb is large, and Bi transitions from R3m to Fm3 ̅m faster than Sb. This thesis discussed the phase transition temperature of sample Ge0.86Sb0.08Bi0.06Te to see when it transiforms from α phase to β phase, and by using the phonon elastic scattering diagram which came from the principle of neutron diffraction to obtain to discuss the behavior mode of phonon. Because elastic scattering is not conserved for particle kinetic energy, and inelastic scattering is momentum conservation. Therefore, we can analyze the microstructure of matter by observing the scattering paths of neutrons, and the changes of momentum and energy, which happened when neutrons interacted with matter.
[1] Landau, L. D.; Lifshitz, E. M. Statistical Physics Pt. 1. Course in Theoretical Physics. 5 (3rd ed.). Oxford: Pergamon Press. p. 193,196(1980).
[2] Neil W. Ashcroft, N. David Mermin,Solid State Physics,Saunders College, (1976).
[3] C. Kittel, Introduction to Solid State Physics(8th ed), p. 95-p. 96(1953).
[4] Phys. Rev. B 95, 024425 (2017).
[5] J. A. Schneeloch, Z. Xu, J. Wen, P. M. Gehring, C. Stock, M. Matsuda, B. Winn, G. Gu, S. M. Shapiro, R. J. Birgeneau, T. Ushiyama, Y. Yanagisawa, Y. Tomioka, T. Ito & G. Xu, , Phys. Rev. B 91, 064301 (2015).
[6] J. Jensen & A. R. Mackintosh, Rare Earth Magnetism: Structures and Excitations P173-177(1991).
[7] Christopher J. Vineis, Ali Shakouri, “Nanostructured Thermoelectrics Big Efficiency Gains from Small Features,” Advanced Materials, vol. 22, pp. 3970-3980, (2010).
[8] G. Xing, J. Sun. Y. Li, X. Fan, W. Zheng, D. J. Singh,’’ Thermoelectric properties of p-type cubic and rhombohedral GeTe,’’ Journal of applied physics, vol. 123, p.195105, (2018).
[9] H. S. Lee, B. S. Kim, C. W. Cho, M. W. Oh, B. K. Min, S. D. Park, H.W. Lee, “Herringbone structure in GeTe-based thermoelectric materials,” Acta Materialia, vol. 91, pp. 83-90, (2015).
[10] S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare , & K. Biswas, Chem. Mater. 29, 24, 10426–10435(2017).
[11] J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, “Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying, “Chemistry of Materials, vol. 29, pp. 605-611(2017).
[12] Perumal, S.; Roychowdhury, S.; Negi, D. S.; Datta, R.; Biswas, K. High Thermoelectric Performance and Enhanced Mechanical Stability of Pb-free p-type Ge1-xSbxTe. Chem. Mater. 27, 7171–7178(2015).
[13] S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater. 29, 10426 (2017).
[14] Hans J. Scheel; Peter Capper; Peter Rudolph.’’Crystal Growth Technology: Semiconductors and Dielectrics’’. John Wiley & Sons. 25, October ,177–178(2017).
[15] 凌慈茵(民110)。摻雜 Sb/Bi 對熱電材料 Ge0.86Sb0.08Bi0.06Te 熱導率的影響。碩士論文,國立中央大學物理學系。
[16] J. Dong, F.-H. Sun, H. Tang, J. P., H.-L. Zhuang, H.-H. Hu, B.-P. Zhang, Y. Pan &J.-F. Li, Energy Environ. Sci., 12, 1396-1403(2019)
[17] X. Zhang, Z. Bu, S. Lin, Joule, Vol.4, 5, p.986-1003(2020)
[18] G. J. Snyder & E. S.Toberer , Nature Materials volume 7, 105–114(2008)
[19] S. Perumal, S. Roychowdhury and K. Biswas, J. Mater. Chem. C, 4, 7520–7536(2016).
[20] E. M. Levin, M. F. Besser, R. Hanus. Journal of Applied Physics, 123, 195105 (2018).
[21] Min Hong, Yuan Wang, Tianli Feng, Qiang Sun, Shengduo Xu, Syo Matsumura, Sokrates T. Pantelides, Jin Zou, and Zhi-Gang Chen,Journal of the American Chemical Society, 141(4), 1742-1748(2019).
[22] Y. Tokure, JSAP international No.2 (Jul. 2000).