| 研究生: |
詹承翰 Cheng-Han Chan |
|---|---|
| 論文名稱: |
先進重力波輸入光學系統之發展與特性研究 The Development and Characterization of Input Optics for Advanced Gravitational Wave Detector |
| 指導教授: |
井上悠貴
Yuki Inoue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 重力波 、重力波探測器 、雷射光學 、雷射穩壓 |
| 外文關鍵詞: | Gravitational Wave, Gravitational Wave Detector, Lasre Optics, Laser intensity stabilization |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從 LIGO 在 2015 年首次偵測到重力波訊號以來,科學家們便開始尋找由\textbf{中等質量黑洞(Intermediate-Mass Black Holes, IMBH)}所產生的其他重力波事件。因此,對於更低頻段重力波訊號的需求日益增加,而新一代的重力波探測器正是以此為主要設計目標。其中包括第二代與第三代的觀測設施,例如進階 LIGO(aLIGO)、Virgo、KAGRA,以及未來規劃中的台灣 CHRONOS 計畫。在本論文中,我將介紹 CHRONOS 系統,並探討其輸入光學系統(Input Optics)的研製與特性化。這項研究首先展示了 Michelson 干涉儀的性能,而其後續的 Sagnac 干涉儀則將被應用於 CHRONOS 的 extbf{速度計(Speed Meter)}之研發。
輸入光學的主要功能,是將穩定的雷射注入 Michelson 干涉儀,並確保其強度與頻率在 $\mathrm{TEM_{00}}$ 模態下保持穩定。在本研究中,我們使用功率 0.5 W、波長 1064 nm 的雷射。首先進行模態匹配 (mode matching) ,以符合預模態清理器(Pre-Mode Cleaner, PMC)的最佳腔體條件 (cavity condition) 與對準配置。經由實驗確認,輸入至 PMC 的雷射光束品質達到 extbf{x-軸 $M^2_x = 0.99 \pm 0.01$ 與 y-軸 $M^2_y = 0.98 \pm 0.02$}。隨後測得 \textbf{PMC 的精細度(finesse)約為 128.3668}。透過電光調制器(EOM),我們產生 Pound-Drever-Hall(PDH)誤差信號,並將雷射鎖定於 PMC 腔體條件內,以獲得高斯光束形貌與最大輸出功率。同時,利用聲光調制器(AOM)與主動控制器 Optical-Follower Servo,我們有效抑制了透射光中的相對功率雜訊,並測得 extbf{在 0.1 赫茲頻率附近之相對功率雜訊約 (Relative power noise) 為 -90 dB}。接著,我們引入參考腔體 (Reference Cavity) ,並應用 PDH 技術進一步穩定雷射的頻率雜訊。 最後,針對未來的研究方向,我們計畫在輸出光學端透過光電探測器觀測干涉條紋訊號,並進行 Michelson 測試,即將 Michelson 干涉儀鎖定並重建其重力波應變訊號。
Ever since the first detection of gravitational wave signals by LIGO in 2015, scientists were looking for other gravitational wave signals produced by \textbf{Intermediate-Mass Black Holes (IMBH)}. Hence, the need for lower stain frequencies of gravitational wave signal is needed, and the next generation of gravitational wave detector is mainly designed to detect such signals. These including second- and third-generation observatories like aLIGO (Advanced LIGO), Virgo, KAGRA, and the proposed future detectors such as the CHRONOS in Taiwan. In this thesis, I will introduce the CHRONOS system and the development and characterization of Input Optics, which will be first demonstration of the Michelson interferometers and its successor, a Sagnac interferometer, will later be used to develop the \textbf{Speed Meter} for CHRONOS.
Input Optics provides a stable laser into the Michelson interferometer, with its intensity and frequency are stabilized in a $\mathrm{TEM_{00}}$ mode. In my study, we implement a 0.5 watt laser with its wavelength of 1064 nano-meter. We first do the mode matching to fit the best alignment and cavity condition for Pre-Mode Cleaner (PMC), and we confirm the alignment to PMC has \textbf{beam quality of $M^2_x=0.99\pm0.01$ for x-axis and $M^2_y=0.98\pm0.02$ for y-axis}. Then we measure \textbf{the finesse of PMC is about 128.3668}. With the usage of electro-optical modulator, we are able to generate a Pound-Drever-Hall error signal to lock the laser within the cavity condition of PMC, this created a clean Gaussian beam shape for maximum power. And with acousto-optic modulator we can use an active controller, Optical-Follower Servo, to mitigate the relative power noise from the transmitted beam and we measured the \textbf{relative power noise is about -90 dB around 0.1 Hz frequncy region}. Next, we employ a reference cavity, and use Pound-Drever-Hall method to stabilized the frequency noise. Finally, for our further development plan, we want to see the fringe signal by the readout photodetector at the Output Optics, and we perform the Michelson Test, which is lock the Michelson interferometer and reconstruct the stain signal of the interferometer.
[1] Weinstein, Galina. ”Einstein’s discovery of gravitational waves 1916-1918”. (2016).
doi:10.48550/arXiv:1602.04040. URL: https://arxiv.org/abs/1602.04040.
[2] GR ¨AF, Christian, et al. ”Design of a speed meter interferometer proof-of-principle ex-
periment”. In: Classical and Quantum Gravity, (2014). doi:10.1088/arXiv:1405.2783.
URL: https://arxiv.org/abs/1405.2783.
[3] Einstein, A., ”Die grundlage der allgemeinen relativit¨atstheorie”. In: Annalen der Physik
354.7 (1916), pp. 769–822.
[4] Andrzej Kr´olak and Mandar Patil. ”The First Detection of Gravitational Waves.” In:
Universe 3.3 (2017). dio:10.3390/universe3030059. URL: https://doi.org/10.3390/
universe3030059.
[5] Schmidt, Patricia. ”Gravitational waves from binary black hole mergers: Model-
ing and observations”. In: Frontiers in Astronomy and Space Sciences 7 (2020).
dio:10.3389/fspas.2020.00028. URL: https://doi.org/10.3389/fspas.2020.00028.
[6] Dietrich, Tim, Tanja Hinderer, and Anuradha Samajdar. ”Interpreting binary neu-
tron star mergers: describing the binary neutron star dynamics, modelling gravi-
tational waveforms, and analyzing detections”. In: General Relativity and Gravita-
tion 53.3 (2021). dio:10.1007/s10714-020-02751-6. URL: https://doi.org/10.1007/
s10714-020-02751-6.
[7] Bernuzzi, Sebastiano. ”Neutron star merger remnants”. In: General Relativity and Gravi-
tation 52.11 (2020). dio:10.1007/s10714-020-02752-5. URL: https://doi.org/10.1007/
s10714-020-02752-5.
[8] Abbott, Benjamin P., et al. ”Observation of gravitational waves from a binary black hole
merger”. In: Physical review letters 116.6 (2016). dio:10.1103/PhysRevLett.116.061102.
URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102.
130
[9] Abbott, R., et al. ”Observation of gravitational waves from two neutron star–black hole
coalescences”. In: The Astrophysical journal letters 915.1 (2021): L5. doi:10.3847/2041-
8213/ac082e.
[10] Ott, Christian D. ”The gravitational-wave signature of core-collapse supernovae”. In:
Classical and Quantum Gravity 26.6 (2009). dio:10.1093/mnras/stz990. URL: https:
//doi.org/10.1093/mnras/stz990.
[11] H Andresen, E M¨uller, H-Th Janka, A Summa, K Gill, M Zanolin, ”Gravitational waves
from 3D core-collapse supernova models: The impact of moderate progenitor rotation”.
In: Monthly Notices of the Royal Astronomical Society 486.2 (2019), pp. 2238–2253.
dio:10.1093/mnras/stz990. URL: https://doi.org/10.1093/mnras/stz990.
[12] Srivastava, Varun, et al. ”Detection prospects of core-collapse supernovae with
supernova-optimized third-generation gravitational-wave detectors”. In: Physical Review
D 100.4 (2019). doi:10.1103/PhysRevD.100.043026. URL: https://doi.org/10.1103/
PhysRevD.100.043026.
[13] Richers, Sherwood, et al. ”Equation of state effects on gravitational waves from rotat-
ing core collapse”. In: Physical Review D 95.6 (2017). dio:10.1103/PhysRevD.95.063019.
URL: https://doi.org/10.1103/PhysRevD.95.063019.
[14] Federico De Lillo, Jishnu Suresh, Andrew L Miller, ”Stochastic gravitational-wave back-
ground searches and constraints on neutron-star ellipticity”. In: Monthly Notices of the
Royal Astronomical Society 513.1, (2022), pp. 1105–1114. dio:10.1093/mnras/stac984.
URL: https://doi.org/10.1093/mnras/stac984.
[15] T. Sekiguchi. ”Study of Low Frequency Vibration Isolation System for Large Scale Grav-
itational Wave Detectors”. PhD thesis, Department of Physics, Graduate School of Sci-
ence, The University of Tokyo, (2016).
[16] Chen, Yanbei. ”Sagnac interferometer as a speed-meter-type, quantum-
nondemolition gravitational-wave detector”. In: Physical Review D (2003).
doi:10.1103/PhysRevD.67.122004. URL: https://doi.org/10.1103/PhysRevD.67.
122004.
[17] Abbott, Benjamin P., et al. ”GW150914: First results from the search for
binary black hole coalescence with Advanced LIGO”. In: Physical Review D
131
(2016). doi:10.1103/PhysRevD.93.122003. URL: https://doi.org/10.1103/PhysRevD.
93.122003.
[18] LIGO, Retrieved 8 July 2025.
[19] KAGRA Gravitational-wave Telescope Starts Observation. KAGRA Observatory. Re-
trieved 8 July 2025.
[20] Sato, Shuichi, et al. ”The status of DECIGO”. In: Journal of Physics: Conference Series.
840.1. IOP Publishing, (2017). dio:10.1088/1742-6596/840/1/012010.
[21] Shimoda, T., ”Cryogenic Torsion Pendulum for Observing Low-frequency Gravity Gra-
dient Fluctuation”. PhD thesis, Department of Physics, Graduate School of Science, The
University of Tokyo, (2019).
[22] John Martyn, ”Constructing a Balanced Homodyne Detector for Low Quantum Noise
Gravitational Wave Interferometry”, Technical Note, LIGO Document, DCC number
T1800296–v1, (2018).
[23] Buonanno, Alessandra, and Yanbei Chen. ”Quantum noise in second generation,
signal-recycled laser interferometric gravitational-wave detectors”. Physical Review D
64.4 (2001). dio:10.1103/PhysRevD.64.042006. URL: doi.org/10.1103/PhysRevD.64.
042006.
[24] Hsiang-Chieh Hsu, ”Study of the cryogenic system and active vibration isolation system
for gravitational wave detection” Msc Thesis, National Cheng Kung University, (2023).
p. 45, Figure 4.8.
[25] Nickerson, M. ”A review of Pound-Drever-Hall laser frequency locking” JILA, University
of Colorado and NIST, (2019).
[26] New Focus. Electro-optic Modulator. Retrieved 29 July 2025.
[27] R. Paschotta, ”Acousto-optic Modulators”. In: RP Photonics Encyclopedia, 1. edition,
RP Photonics AG, October 2008. dio:10.61835/az1. URL: https://doi.org/10.61835/
az1.
[28] ISOMET. Acousto-optic Modulators, Retrieved 29 July 2025.
[29] Analog Devices. AD590, Retrieved 25 July 2024.
132
[30] Ando, Masaki, et al. ”Torsion-bar antenna for low-frequency gravitational-wave obser-
vations.” Physical review letters 105.16 (2010). dio:10.1103/PhysRevLett.105.161101.
URL: https://doi.org/10.1103/PhysRevLett.105.161101.
[31] Inoue, Y., et al. ”Development of advanced photon calibrator for Kamioka grav-
itational wave detector (KAGRA)”. Review of Scientific Instruments 94.7 (2023).
dio:10.1063/5.0147888. URL: https://doi.org/10.1063/5.0147888.
[32] Mouser Electronics. Heater, Retrieved 25 July 2024.
[33] edmundoptics, ”Gaussian Beam Propagation”. Retrieved 25 July 2024.
[34] Transverse mode, Wikipedia, Retrieved 29 July 2025.
[35] Patrick Kwee, ”PMC Temperature Controller”, LIGO Document, DCC number
D1001618-v1. (2010).
[36] B. Abbott, ”OpFollower Servo”, LIGO Document, DCC number D1300514-v4. (2019).
[37] B. Abbott, ”Buffer”, LIGO Document, DCC number D1300514-v4. (2019).
[38] Suter, Martin, and Peter Dietiker. ”Calculation of the finesse of an ideal Fabry–Perot
resonator”. In: Applied optics 53.30 (2014), pp. 7004-7010. dio:10.1364/AO.53.007004.
URL: https://doi.org/10.1364/AO.53.007004.
[39] Leo, Tsukada, ”重力波出器KAGRA向周波照共振器性能評”, KAGRA Doucment, DCC
number JGW-T1605140-v0. (2016).
[40] Hsiang-Chieh Hsu, ”Study of the cryogenic system and active vibration isolation system
for gravitational wave detection” Msc Thesis, National Cheng Kung University, (2023).
p 83, Figure 6.8.
[41] Badaracco, Francesca, et al. ”KAGRA underground environment and lessons for the Ein-
stein Telescope”. In: Physical Review D 104.4 (2021). doi:10.1103/PhysRevD.104.042006
URL: https://doi.org/10.1103/PhysRevD.104.042006.