| 研究生: |
紀旻秀 Min-Xiu Ji |
|---|---|
| 論文名稱: |
由ENCODE計畫分析脫氧核醣核酸酶I與組蛋白修飾 Analysis of DNase I hypersensitivity sites and Histone modifications data from ENCODE project |
| 指導教授: |
王孫崇
Sun-Chong Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 表觀基因體學 、組蛋白修飾 、脫氧核醣核酸酶I高敏感位點 |
| 外文關鍵詞: | Epigenetic, histone modification, DNase I Hypersensitive sites |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,表觀基因體學的文獻發表有成長的趨勢,許多的文獻都著重於表觀基因體與影響基因的表現狀況。此篇論文,我們則提出了與以往不同的角度來分析表觀基因體與脫氧核醣核酸酶I高敏感位點之關聯性。
於組蛋白修飾的部分,我們能從文獻中得知,某些組蛋白修飾會引起基因高表現或低表現。此次我們的研究在脫氧核醣核酸酶I高敏感位點與六種組蛋白修飾中,我們觀察到這六種組蛋白修飾與open chromatin有相關性。例如:從脫氧核醣核酸酶I高敏感位點與H3K4me3共同存在的頻率會比脫氧核醣核酸酶I高敏感位點與H3K27me3共同存在的頻率還要高。H3K4me3與open chromatin有正相關;反之,H3K27me3則與open chromatin呈負相關性。
另外,我們也分析在不同細胞株的H3K4me3與H3K27me3共同調控的基因中,他們各自的功能,此結果與之前文獻亦有相同之處。例如:癌症細胞中,我們發現與代謝相關基因,它們存在於H3K4me3與H3K27me3重疊的地方。
In recent years, publications of papers on epigenetics have increased. Many papers concerned epigenetics and gene expression. This thesis analyzed the association between epigenetics and DNase I hypersensitive sites.
We focus on histone modification part of epigenetics. Previous studies indicated that some histone modifications might affect gene expression. This thesis analyzed the association between six types of histone modifications and DNase I hypersensitive sites, and we found correlations between histone modifications and open chromatin. Specifically, From our research, H3K4me3 and DNase I Hypersensitive sites overlap more frequently then H3K27me3 and DNase I Hypersensitive sites frequency. H3K4me3 is positively correlated with open chromatin, and H3K27me3 is negatively correlated with open chromatin.
Besides, we also analyzed, across cell lines, the functions of genes where H3K4me3 and H3K27me3 overlap, and the result is similar to the previous studies. For example, in cancer cells are found metabolism-related genes with overlapping H3K4me3 and H3K27me3.
[1] B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne, et al., "Relative impact of nucleotide and copy number variation on gene expression phenotypes," Science, vol. 315, pp. 848-53, Feb 9 2007.
[2] L. Han, B. Su, W. H. Li, and Z. Zhao, "CpG island density and its correlations with genomic features in mammalian genomes," Genome Biol, vol. 9, p. R79, 2008.
[3] A. Hermann, R. Goyal, and A. Jeltsch, "The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites," J Biol Chem, vol. 279, pp. 48350-9, Nov 12 2004.
[4] R. J. Klose and A. P. Bird, "Genomic DNA methylation: the mark and its mediators," Trends Biochem Sci, vol. 31, pp. 89-97, Feb 2006.
[5] K. D. Robertson and A. P. Wolffe, "DNA methylation in health and disease," Nat Rev Genet, vol. 1, pp. 11-9, Oct 2000.
[6] R. E. Amir, I. B. Van den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, "Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2," Nature Genetics, vol. 23, pp. 185-188, Oct 1999.
[7] M. Esteller, J. M. Silva, G. Dominguez, F. Bonilla, X. Matias-Guiu, E. Lerma, et al., "Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors," J Natl Cancer Inst, vol. 92, pp. 564-9, Apr 5 2000.
[8] P. A.Marks, "<Histone deacetylases and cancer: causes and therapies.pdf>," Nature Reviews Cancer vol. 1, pp. 194-202, 2001.
[9] V. W. Zhou, A. Goren, and B. E. Bernstein, "Charting histone modifications and the functional organization of mammalian genomes," Nat Rev Genet, vol. 12, pp. 7-18, Jan 2011.
[10] G. Sadri-Vakili and J. H. Cha, "Mechanisms of disease: Histone modifications in Huntington's disease," Nat Clin Pract Neurol, vol. 2, pp. 330-8, Jun 2006.
[11] S. R. Bhaumik, E. Smith, and A. Shilatifard, "Covalent modifications of histones during development and disease pathogenesis," Nat Struct Mol Biol, vol. 14, pp. 1008-16, Nov 2007.
[12] O. F. Sarmento, L. C. Digilio, Y. Wang, J. Perlin, J. C. Herr, C. D. Allis, et al., "Dynamic alterations of specific histone modifications during early murine development," J Cell Sci, vol. 117, pp. 4449-59, Sep 1 2004.
[13] E. Hinde, F. Cardarelli, A. Chen, M. Khine, and E. Gratton, "Tracking the mechanical dynamics of human embryonic stem cell chromatin," Epigenetics Chromatin, vol. 5, p. 20, 2012.
[14] P. A. Jones and S. B. Baylin, "The epigenomics of cancer," Cell, vol. 128, pp. 683-92, Feb 23 2007.
[15] Y. Kondo and J.-P. J. Issa, "Epigenetic changes in colorectal cance," Cancer and Metastasis Reviews, vol. 23, pp. 29-39, 2004.
[16] X. Jiang, J. Tan, J. Li, S. Kivimae, X. Yang, L. Zhuang, et al., "DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications," Cancer Cell, vol. 13, pp. 529-41, Jun 2008.
[17] R. E. Thurman, E. Rynes, R. Humbert, J. Vierstra, M. T. Maurano, E. Haugen, et al., "The accessible chromatin landscape of the human genome," Nature, vol. 489, pp. 75-82, Sep 6 2012.
[18] X. Dong, M. C. Greven, A. Kundaje, S. Djebali, J. B. Brown, C. Cheng, et al., "Modeling gene expression using chromatin features in various cellular contexts," Genome Biol, vol. 13, p. R53, 2012.
[19] C. M. Koch, R. M. Andrews, P. Flicek, S. C. Dillon, U. Karaoz, G. K. Clelland, et al., "The landscape of histone modifications across 1% of the human genome in five human cell lines," Genome Res, vol. 17, pp. 691-707, Jun 2007.
[20] A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, et al., "High-resolution profiling of histone methylations in the human genome," Cell, vol. 129, pp. 823-37, May 18 2007.
[21] D. J. Steger, M. I. Lefterova, L. Ying, A. J. Stonestrom, M. Schupp, D. Zhuo, et al., "DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells," Mol Cell Biol, vol. 28, pp. 2825-39, Apr 2008.
[22] P. Madrigal and P. Krajewski, "Current bioinformatic approaches to identify DNase I hypersensitive sites and genomic footprints from DNase-seq data," Front Genet, vol. 3, p. 230, 2012.
[23] T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman, G. Giannoukos, et al., "Genome-wide maps of chromatin state in pluripotent and lineage-committed cells," Nature, vol. 448, pp. 553-60, Aug 2 2007.
[24] C. Gene Ontology, "The Gene Ontology project in 2008," Nucleic Acids Res, vol. 36, pp. D440-4, Jan 2008.
[25] C. J. Mungall, M. Bada, T. Z. Berardini, J. Deegan, A. Ireland, M. A. Harris, et al., "Cross-product extensions of the Gene Ontology," J Biomed Inform, vol. 44, pp. 80-6, Feb 2011.
[26] E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, "GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists," BMC Bioinformatics, vol. 10, p. 48, 2009.
[27] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, et al., "GENCODE: the reference human genome annotation for The ENCODE Project," Genome Res, vol. 22, pp. 1760-74, Sep 2012.
[28] G. Pan, S. Tian, J. Nie, C. Yang, V. Ruotti, H. Wei, et al., "Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells," Cell Stem Cell, vol. 1, pp. 299-312, Sep 13 2007.
[29] D. L. Jones and A. J. Wagers, "No place like home: anatomy and function of the stem cell niche," Nat Rev Mol Cell Biol, vol. 9, pp. 11-21, Jan 2008.
[30] P. Chi, C. D. Allis, and G. G. Wang, "Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers," Nat Rev Cancer, vol. 10, pp. 457-69, Jul 2010.
[31] X.-S. Ke, "Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis.," PLoS ONE, vol. 4, pp. 1-14, 2009.
[32] T. Miki, T. Lehmann, H. Cai, D. B. Stolz, and S. C. Strom, "Stem cell characteristics of amniotic epithelial cells," Stem Cells, vol. 23, pp. 1549-59, Nov-Dec 2005.
[33] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, et al., "Induction of pluripotent stem cells from adult human fibroblasts by defined factors," Cell, vol. 131, pp. 861-72, Nov 30 2007.
[34] S. Yamanaka, "A fresh look at iPS cells," Cell, vol. 137, pp. 13-7, Apr 3 2009.
[35] T. E. P. Consortium, "A User's Guide to the Encyclopedia of DNA Elements (ENCODE),"
PLOS BIOLOGY, vol. 9, 20
[36] P. J. Sabo, M. S. Kuehn, R. Thurman, B. E. Johnson, E. M. Johnson, H. Cao, et al., "Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays," Nat Methods, vol. 3, pp. 511-8, Jul 2006.
[37] S. G. Landt, G. K. Marinov, A. Kundaje, P. Kheradpour, F. Pauli, S. Batzoglou, et al., "ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia," Genome Res, vol. 22, pp. 1813-31, Sep 2012.