跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林子荃
Tzu-Chuan Lin
論文名稱: 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
An Investigation on Performance and Design Parameters of the Oxic-Anoxic-Oxic process for Nitrogen Removal
指導教授: 莊順興
Shun-Hsing Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 129
中文關鍵詞: OAO除氮程序SBCOD水解作用污水廠設計參數
外文關鍵詞: OAO process, SBCOD, Hydrolysis, Design parameters of sewage treatment plants
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著居住地、工業與農業之快速發展,有大量氮污染物排放至承受水體中,導致淡水生態系統優養化,嚴重地威脅到了水生生物以及人們之健康安全。且國內法規對於排放水之水質要求也越加嚴格,為了達到法規所限制之放流水標準,對污水處理廠處理程序和性能之探討為必要事項。
    本研究以模型廠操作OAO生物去氮程序(Oxic-Anoxic-Oxic,好氧-缺氧-好氧),模型廠設置於桃園北區水資源中心。由操作結果探討OAO程序對水中污染物之處理效能、合適之操作範圍以及探討污泥吸附有機物之利用特性。
    在HRT為10~12小時之條件下,COD、BOD、氨氮、總氮之去除率分別可達80%、90%、90%、60%以上,整體效果均符合放流水標準。但由各階段不同之第一段-好氧槽(硝化槽)水力停留時間(HRT)結果顯示,應至少設計達6小時之HRT以達良好之硝化效率。好氧:缺氧:好氧為5:4:1之分配對於氮之去除能有較佳且穩定之能力,提供缺氧槽足夠體積以提高殘餘溶氧之衝擊承受度,能夠有效提升脫硝能力。經研究結果,建議設計參數HRT調整為10~16小時、F/M值為0.05~0.15 kg BOD/kg MLSS∙d、ASRT為15~30天,作為設計準則。
    由吸附試驗結果可得知活性污泥在消耗完系統內之有機物之後,能將吸附於表面之有機物進行水解反應以獲取能量以供生物成長。且將比脫硝速率(SDNR)數值以及由質量平衡得出之系統比脫硝速率進行比較,顯示水解作用能夠使後脫硝配置之系統擁有前脫硝配置之脫硝潛力。代表OAO程序之核心,活性污泥利用所吸附之緩慢可生物分解COD(SBCOD)及積蓄於細胞內之有機物作為碳源進行脫硝具可行性。
    試驗中不同之F/M操作下皆能得到良好之污染物去除率,顯示OAO程序之操作彈性大。但由吸附試驗可得知較高之F/M能使水解作用之有機物利用效率更高,因此F/M對OAO程序效率之影響於未來需作更深入之探討。


    With the rapid development of residential, industrial, and agricultural sectors, a considerable amount of nitrogen pollution is being released into receiving water bodies, causing eutrophication of freshwater ecosystems and posing a serious threat to aquatic organisms as well as human health and safety. Furthermore, domestic regulations regarding the water quality requirements for discharged water have become stricter. Therefore, it is vital to investigate the treatment processes and performance of wastewater treatment plants to meet the discharge standards set by regulations.
    The purpose of this research is to investigate the performance of the Oxic-Anoxic-Oxic (OAO) biological nitrogen removal process with a pilot plant at Taoyuan North District Water Resource Center. The designed flow rate of the pilot plant is 3-4 CMD. The study investigates the OAO process's pollution removal efficiency and proposes suitable operation parameter ranges. It also looks into the utilization characteristics of sludge surface-adsorbed organic matter.
    Under a hydraulic retention time (HRT) of 10-12 hours, the removal rates of COD, BOD, ammonia nitrogen, and total nitrogen are all above 80%, 90%, 90%, and 60% respectively, meeting the discharge criteria. However, the results of various HRTs indicate that a minimum HRT of 6 hours of the first oxic tank should be designed to ensure sufficient reaction time for nitrification. The distribution of oxic:anoxic:oxic tanks at a ratio of 5:4:1 demonstrates better and more stable nitrogen removal capability, providing sufficient volume for the anoxic tank to enhance the tolerance of residual dissolved oxygen, thereby effectively improving denitrification capacity. Based on the research results, it is recommended to adjust the design parameters as follows: HRT of 10-16 hours, F/M value of 0.05-0.15 kg BOD/kg MLSS∙d, and an aerobic sludge retention time (ASRT) of 15-30 days, as design guidelines.
    The adsorption test results reveal that after the consumption of organic matter in the system, activated sludge can hydrolyze the adsorbed organic matter on its surface to obtain energy and support microbial growth. Furthermore, comparing the specific denitrification nitrate removal (SDNR) value to the system-based denitrification rate derived from mass balance, it is evident that hydrolysis of SBCOD(slowly biodegradeble COD) enables the post-denitrification configuration to possess a denitrification potential similar to the pre-denitrification configuration. This indicates the viability of using adsorbed SBCOD and organic matter storaged in activated sludge cells as carbon sources for denitrification in the OAO process.
    In this study, good pollutant removal rates were obtained under various F/M conditions, making it difficult to determine the effect of F/M on the OAO process. However, the adsorption test indicates that higher F/M values result in higher utilization efficiency of organic matter in hydrolysis process. As a result, future research should conduct to investige the effect of F/M on the efficiency of the OAO process.

    摘要 i Abstract ii 圖形摘要 iv 致謝 v 目錄 vi 圖目錄 viii 表目錄 xii 第一章 前言 1 1-1 研究源起 1 1-2 研究內容與目的 2 第二章 文獻回顧 3 2-1 生物除氮作用 3 2-2 硝化內生脫硝法(Oxic-Anoxic-Oxic, OAO) 10 2-3 不同特性COD於生物吸附之角色 15 2-4 活性污泥系統中之水解作用 19 第三章 研究方法 23 3-1 研究架構 23 3-2 模型廠設計組裝、馴養 25 3-3 污泥有機物水解試驗 32 3-4 污泥比脫硝速率試驗SDNR(specific denitrification rate) 35 3-5 污泥比攝氧率SOUR(specific oxygen uptake rate, SOUR) 40 3-6 水質分析方法 42 第四章 結果與討論 43 4-1 模型廠操作結果 43 4-2 污泥活性試驗結果 83 4-3 OAO核心機制探討 89 4-4 OAO程序設計與參數探討 95 第五章 結論與建議 104 5-1 結論 104 5-2 建議 105 第六章 參考文獻 106

    Åmand, L., & Carlsson, B. (2012). Optimal aeration control in a nitrifying activated sludge process. Water Research, 46(7), 2101-2110. https://doi.org/https://doi.org/10.1016/j.watres.2012.01.023
    Arias-Navarro, M., Villen-Guzman, M., Perez-Recuerda, R., & Rodriguez-Maroto, J. M. (2019). The use of respirometry as a tool for the diagnosis of waste water treatment plants. A real case study in Southern Spain. Journal of Water Process Engineering, 29, 100791.
    Bracklow, U., Drews, A., Gnirss, R., Klamm, S., Lesjean, B., Stüber, J., Barjenbruch, M., & Kraume, M. (2010). Influence of sludge loadings and types of substrates on nutrients removal in MBRs. Desalination, 250(2), 734-739.
    Burghate, S., & Ingole, N. (2014). Biological denitrification—A review. Journal of Environmental Science, Computer Science and Engineering & Technology, 3(1), 009-028.
    Cadoret, A., Conrad, A., & Block, J.-C. (2002). Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme and Microbial Technology, 31(1), 179-186. https://doi.org/https://doi.org/10.1016/S0141-0229(02)00097-2
    Campos, J. L., Garrido, J. M., Mosquera-Corral, A., & Méndez, R. (2007). Stability of a nitrifying activated sludge reactor. Biochemical Engineering Journal, 35(1), 87-92. https://doi.org/https://doi.org/10.1016/j.bej.2007.01.002
    Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview (Vol. 3). IntechOpen Rijeka.
    Cho, K. H., Kim, J.-O., Kang, S., Park, H., Kim, S., & Kim, Y. M. (2014). Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH. Separation and Purification Technology, 132, 697-703. https://doi.org/https://doi.org/10.1016/j.seppur.2014.06.027
    Choi, Y.-Y., Baek, S.-R., Kim, J.-I., Choi, J.-W., Hur, J., Lee, T.-U., Park, C.-J., & Lee, B. J. (2017). Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge. Water, 9(6), 409. https://www.mdpi.com/2073-4441/9/6/409
    Choubert, J.-M., Racault, Y., Grasmick, A., Beck, C., & Heduit, A. (2005). Maximum nitrification rate in activated sludge processes at low temperature: key parameters, optimal value. E-Water, Official Publication of the European Water Association (EWA).
    Drewnowski, J. (2014). The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Science and Technology, 69(6), 1136-1144.
    Drewnowski, J., & Makinia, J. (2013). Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Science and Technology, 67(9), 2067-2074.
    Drewnowski, J., & Makinia, J. (2014). The role of biodegradable particulate and colloidal organic compounds in biological nutrient removal activated sludge systems. International Journal of Environmental Science and Technology, 11, 1973-1988.
    Drewnowski, J., Mąkinia, J., Szaja, A., Łagód, G., Kopeć, Ł., & Aguilar, J. A. (2019). Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water, 11(3), 485. https://www.mdpi.com/2073-4441/11/3/485
    Drewnowski, J., Szeląg, B., Xie, L., Lu, X., Ganesapillai, M., Deb, C. K., Szulżyk-Cieplak, J., & Łagód, G. (2020). The Influence of COD Fraction Forms and Molecules Size on Hydrolysis Process Developed by Comparative OUR Studies in Activated Sludge Modelling. Molecules, 25(4), 929. https://www.mdpi.com/1420-3049/25/4/929
    Elefsiniotis, P., & Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2), 148-155. https://doi.org/https://doi.org/10.1016/j.bej.2005.10.004
    Fernández, F. J., Castro, M. C., Villasenor, J., & Rodríguez, L. (2011). Agro-food wastewaters as external carbon source to enhance biological phosphorus removal. Chemical Engineering Journal, 166(2), 559-567. https://doi.org/https://doi.org/10.1016/j.cej.2010.11.023
    Figuerola, E. L. M., & Erijman, L. (2010). Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. Journal of Hazardous Materials, 181(1-3), 281-288. https://doi.org/10.1016/j.jhazmat.2010.05.009
    Gao, X., Zhang, T., Wang, B., Xu, Z., Zhang, L., & Peng, Y. (2020). Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification. Chemosphere, 252, 126624. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126624
    Gatti, M., García-Usach, F., Seco, A., & Ferrer, J. (2010). Wastewater COD Characterization: Analysis of Respirometric and Physical-Chemical Methods for Determining Biodegradable Organic Matter Fractions. Journal of Chemical Technology & Biotechnology, 85, 536-544. https://doi.org/10.1002/jctb.2325
    Ge, S. J., Wang, S. Y., Yang, X., Qiu, S., Li, B. K., & Peng, Y. Z. (2015). Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere, 140, 85-98. https://doi.org/10.1016/j.chemosphere.2015.02.004
    Glass, C., & Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research, 32(3), 831-839.
    Guo, L., Guo, Y., Sun, M., Gao, M., Zhao, Y., & She, Z. (2018). Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms. Environ Sci Pollut Res Int, 25(13), 13079-13092. https://doi.org/10.1007/s11356-017-0836-y
    He, S.-b., Xue, G., & Wang, B.-z. (2009). Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials, 168(2), 704-710. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.02.099
    Hocaoglu, S. M., Atasoy, E., Baban, A., & Orhon, D. (2013). Modeling biodegradation characteristics of grey water in membrane bioreactor. Journal of Membrane Science, 429, 139-146. https://doi.org/https://doi.org/10.1016/j.memsci.2012.11.012
    How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T., & Curtis, T. P. (2019). Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: Low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Science of The Total Environment, 693, 133526. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.07.332
    How, S. W., Sin, J. H., Wong, S. Y. Y., Lim, P. B., Mohd Aris, A., Ngoh, G. C., Shoji, T., Curtis, T. P., & Chua, A. S. M. (2020). Characterization of slowly-biodegradable organic compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen removal. Water Science and Technology, 81(1), 71-80.
    Hu, B., Quan, J., Huang, K., Zhao, J., Xing, G., Wu, P., Chen, Y., Ding, X., & Hu, Y. (2021). Effects of C/N ratio and dissolved oxygen on aerobic denitrification process: A mathematical modeling study. Chemosphere, 272, 129521. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129521
    Insel, G., Sözen, S., Yucel, A. B., Gökçekuş, H., & Orhon, D. (2019). Assessment of anoxic volume ratio based on hydrolysis kinetics for effective nitrogen removal: model evaluation. Journal of Chemical Technology & Biotechnology, 94(6), 1739-1751.
    Kanda, R., Kishimoto, N., Hinobayashi, J., Hashimoto, T., Tanaka, S., & Murakami, Y. (2017). Influence of temperature and COD loading on biological nitrification–denitrification process using a trickling filter: an empirical modeling approach. International Journal of Environmental Research, 11, 71-82.
    Kruse, M., Zumbrägel, S., Bakker, E., Spieck, E., Eggers, T., & Lipski, A. (2013). The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Systematic and Applied Microbiology, 36(7), 517-524. https://doi.org/https://doi.org/10.1016/j.syapm.2013.06.007
    Kujawa, K., & Klapwijk, B. (1999). A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Research, 33(10), 2291-2300.
    Li, D., Liang, X., Li, Z., Jin, Y., Zhou, R., & Wu, C. (2020). Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor. Canadian journal of microbiology, 66(1), 59-70.
    Li, H., Zhang, Y., Yang, M., & Kamagata, Y. (2013). Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Frontiers of Environmental Science & Engineering, 7(1), 43-48. https://doi.org/10.1007/s11783-012-0397-8
    Lim, C.-P., Neo, J. L., Mar⿿atusalihat, E., Zhou, Y., & Ng, W. J. (2016). Biosorption for carbon capture on acclimated sludge⿿Process kinetics and microbial community. Biochemical Engineering Journal, 114, 119-129. https://doi.org/10.1016/j.bej.2016.04.022
    Lim, C.-P., Zhang, S., Zhou, Y., & Ng, W. J. (2015). Enhanced carbon capture biosorption through process manipulation. Biochemical Engineering Journal, 93, 128-136. https://doi.org/10.1016/j.bej.2014.10.003
    Limpiyakorn, T., Shinohara, Y., Kurisu, F., & Yagi, O. (2004). Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16S rDNA sequence. Water Science and Technology, 50(8), 9-14.
    Liu, B., Terashima, M., Quan, N. T., Ha, N. T., Van Chieu, L., Goel, R., & Yasui, H. (2018). Determination of optimal dose of allylthiourea (ATU) for the batch respirometric test of activated sludge. Water Science and Technology, 77(12), 2876-2885.
    Liu, G., & Wang, J. (2014). Role of solids retention time on complete nitrification: mechanistic understanding and modeling. Journal of Environmental Engineering, 140(1), 48-56.
    Liu, H., Yang, F., Shi, S., & Liu, X. (2010). Effect of substrate COD/N ratio on performance and microbial community structure of a membrane aerated biofilm reactor. Journal of Environmental Sciences, 22(4), 540-546. https://doi.org/https://doi.org/10.1016/S1001-0742(09)60143-1
    Liu, H., Zhao, F., Mao, B., & Wen, X. (2012). Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis. Bioresour Technol, 114, 62-68. https://doi.org/10.1016/j.biortech.2012.02.112
    Liu, Z., & Smith, S. R. (2021). Enzyme recovery from biological wastewater treatment. Waste and Biomass Valorization, 12, 4185-4211.
    McIlroy, S. J., Starnawska, A., Starnawski, P., Saunders, A. M., Nierychlo, M., Nielsen, P. H., & Nielsen, J. L. (2016). Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol, 18(1), 50-64. https://doi.org/10.1111/1462-2920.12614
    Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.
    Mikola, A., Vahala, R., & Rautiainen, J. (2011). Factors affecting the quality of the plant influent and its suitability for prefermentation and the biological nutrient removal process. Journal of Environmental Engineering, 137(12), 1185-1192.
    Morgenroth, E., Kommedal, R., & Harremoës, P. (2002). Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment–a review. Water Science and Technology, 45(6), 25-40.
    Murat Hocaoglu, S., Insel, G., Ubay Cokgor, E., Baban, A., & Orhon, D. (2010). COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions. Journal of Chemical Technology & Biotechnology, 85(9), 1241-1249.
    Noyan, K., Allı, B., Okutman Taş, D., Sözen, S., & Orhon, D. (2017). Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage. Journal of Chemical Technology & Biotechnology, 92(8), 2142-2149.
    Olsson, G. (2012). Waterwaterand WastewaterWastewaterOperationwateroperationWastewaterOperation: Instrumentation, Monitoring, Control and Automation. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 11946-11960). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_330
    Peng, Y.-z., Ma, Y., & Wang, S.-y. (2007). Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process. Journal of Environmental Sciences, 19(3), 284-289. https://doi.org/https://doi.org/10.1016/S1001-0742(07)60046-1
    Piechna, P., & Żubrowska-Sudoł, M. (2017). Respirometric activity of activated sludge and biofilm in IFAS-MBBR system. Journal of Ecological Engineering, 18(4).
    Płuciennik-Koropczuk, E., & Myszograj, S. (2019). New Approach in COD Fractionation Methods. Water, 11(7), 1484. https://www.mdpi.com/2073-4441/11/7/1484
    Rahman, A., Yapuwa, H., Baserba, M. G., Rosso, D., Jimenez, J. A., Bott, C., Al-Omari, A., Murthy, S., Riffat, R., & Clippeleir, H. D. (2017). Methods for quantification of biosorption in high-rate activated sludge systems. Biochemical Engineering Journal, 128, 33-44. https://doi.org/https://doi.org/10.1016/j.bej.2017.09.006
    Rittmann, B. E., & McCarty, P. L. (2001). Environmental Biotechnology:Principles and Applications.
    Sivadon, P., Barnier, C., Urios, L., & Grimaud, R. (2019). Biofilm formation as a microbial strategy to assimilate particulate substrates. Environmental microbiology reports, 11(6), 749-764.
    Tas, D. O., Karahan, Ö., I˙ nsel, G., Övez, S., Orhon, D., & Spanjers, H. (2009). Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater. Water Environment Research, 81(7), 715-727.
    Thörn, M., & Sörensson, F. (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research, 30(6), 1543-1547.
    Tran, N. H., Ngo, H. H., Urase, T., & Gin, K. Y.-H. (2015). A critical review on characterization strategies of organic matter for wastewater and water treatment processes. Bioresource Technology, 193, 523-533. https://doi.org/https://doi.org/10.1016/j.biortech.2015.06.091
    Tran, Q. L., Tu, T. T., Hai, N. D., Hung, N. Q., & Kien, D. T. (2021). Assessment of organics and nitrogen removal of aerobic granular sludge with the alternating operation of oxic–anoxic–oxic phases and different feeding mode in sequential batch reactor. SNRU Journal of Science and Technology, 13(2), 46-54.
    Wagner, M., Rath, G., Amann, R., Koops, H.-P., & Schleifer, K.-H. (1995). In situ Identification of Ammonia-oxidizing Bacteria. Systematic and Applied Microbiology, 18(2), 251-264. https://doi.org/https://doi.org/10.1016/S0723-2020(11)80396-6
    Wang, B.-B., Chang, Q., Peng, D.-C., Hou, Y.-P., Li, H.-J., & Pei, L.-Y. (2014). A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level. Water Research, 64, 53-60.
    Wang, B.-B., Liu, X.-T., Chen, J.-M., Peng, D.-C., & He, F. (2018). Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. Water Research, 129, 133-142. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.008
    Wang, J., Ji, Y., Zhang, F., Wang, D., He, X., & Wang, C. (2019). Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation. Carbon Resources Conversion, 2(2), 151-156. https://doi.org/https://doi.org/10.1016/j.crcon.2019.06.001
    Wingender, J., Neu, T. R., & Flemming, H.-C. (1999). What are bacterial extracellular polymeric substances? Springer.
    Winkler, M., Coats, E. R., & Brinkman, C. K. (2011). Advancing post-anoxic denitrification for biological nutrient removal. Water Research, 45(18), 6119-6130.
    Zhang, J., Shao, Y., Liu, G., Qi, L., Wang, H., Xu, X., & Liu, S. (2021). Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods. Scientific Reports, 11(1), 1-10.
    Zhang, X., Li, X., Zhang, Q., Peng, Q., Zhang, W., & Gao, F. (2014). New insight into the biological treatment by activated sludge: the role of adsorption process. Bioresour Technol, 153, 160-164. https://doi.org/10.1016/j.biortech.2013.11.084
    Zhou, S. Q. (2001). Theoretical Stoichiometry of Biological Denitrifications. Environmental Technology, 22(8), 869-880. https://doi.org/10.1080/09593332208618223
    Zhu, S., & Chen, S. (2001). Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, 25(1), 1-11. https://doi.org/https://doi.org/10.1016/S0144-8609(01)00071-1
    內政部營建署. (2021). 污水處理廠設計及解說.
    日本下水道協會. (1994). 高度處理施設設計マ ニュアル(案).
    歐陽嶠暉. (2016). 下水道學. (台灣水環境再生協會)

    QR CODE
    :::