| 研究生: |
江準熙 Juen-Shi Jiang |
|---|---|
| 論文名稱: |
1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究 A Study on the Patterns and Changes in Seismicity, Focal Mechanism and Crustal Stress before and after the 1999 Chi-Chi, Taiwan, Earthquake |
| 指導教授: |
辛在勤
Tzay-Chyn Shin 黃柏壽 Bor-Shouh Huang 蔡義本 Yi-Ben Tsai |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 地球物理研究所 Graduate Institue of Geophysics |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 震源機制 、震矩張量 、主分量分析 、地震群集 、震源疊合 、應力張量 |
| 外文關鍵詞: | hypocenter collapsing, stress tensor, earthquake clustering, focal mechanism, moment tensor, principal component analysis |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為探討1999年集集地震震源區受到該次大地震釋放應力後,可能引起的應力調整作用,本研究綜合分析了集集地震震源區之地震活動、震源機制與地殼應力,並應用多種型態辨識方法由餘震分佈辨識斷層面,進而分析集集主餘震與已知斷層構造之關連性。
就地震活動分析而言,本研究使用地震群集法客觀篩選出1999年集集大地震之餘震資料,然後再應用震源疊合法,重新定位調整餘震活動,結果發現餘震活動顯著形成6個集集大地震前所沒有的群集現象。另由b值分析顯示集集大地震前之地震活動,較大規模的次數明顯不足,集集大地震後的餘震活動彌補了大量較大規模次數。藉由移動時窗方式之b值時序分析,本研究發現自1994年到集集大地震前b值有逐漸增大之線性特徵,此一異常現象是否為地震前兆,值得進一步深入探討。
就震源機制分析而言,集集地震震源區之較大與較深地震以逆斷層為主,較小與較淺地震則以走向滑移斷層為主。換言之,在集集震源區逆斷層機制主導大規模的地震,反應區域性的地殼應力型態。就空間分佈而言,車籠埔斷層東側之斷層上盤區域,主要受到逆斷層機制作用;在車籠埔斷層東南方與車籠埔斷層南北兩端的區域,主要受到走向滑移斷層機制作用;在車籠埔斷層中段與中央山脈東側則主要受到正斷層機制作用。各類震源機制隨著時間序列以近乎等比例方式發生,這意味著集集大地震引發大區域全面性的地體構造運動,因此三種震源機制個數都以大約相等比例的方式隨著時間觸發。
餘震分佈為辨識斷層面常用的傳統方法,本研究成功的應用多種型態辨識方法,包括地震群集法、震源疊合法、主分量分析與等面積投影法,分析餘震活動之空間分佈形貌,並搭配對比震源機制解已知的二個節面,藉以辨識斷層面。本研究總共辨識得出115個斷層面,提供後續斷層構造與地震活動相關性研究之寶貴線索,包括先存的斷層、新生的斷層或者是潛藏地下的盲斷層。
就地殼應力分析而言,藉由規模與震矩之經驗關係先由地震規模估算震矩值,再與震源機制結合而成經驗震矩張量,最後透過震矩張量總和方法,本研究分析1999年集集地震前後在震源區地殼應力之分佈與變化。結果顯示,雖然集集地震前後震源區之地震活動與震源機制分佈有很大差異,但是整體的地殼應力型態並無改變。用網格方式的應力估計結果,本研究為集集震源區建立了一個經驗震源機制、震矩張量與地殼應力資料庫。
綜合以上地震活動、震源機制與地殼應力分析的結果,本研究發現在走向滑移的構造環境下,伴隨地震之變形多集中於走向滑移斷層帶附近,地震的規模較小;在擠壓的構造環境下,伴隨地震之變形多分佈於廣大區域和比較分散的斷層帶上,甚至觸發先前存在的斷層構造重新活動,不但會引發大規模的地震,其影響範圍亦較廣泛。
In order to investigate stress adjustments in the source region of the 1999 Chi-Chi earthquake, the regional seismic activities, focal mechanisms, and crustal stresses are together analyzed in this study. In addition, we have identified the true fault planes by applying several methods of pattern recognition on aftershock distributions. The results are further used to examine their relevance to the known fault structures.
In the study of seismic activities, we first define the aftershocks of the Chi-Chi earthquake by the earthquake clustering method. The locations of aftershocks are then adjusted by the hypocenter collapsing method. The results show six distinct clusters of aftershocks. An analysis of the b value shows a lack of larger earthquakes before the Chi-Chi earthquake which was subsequently compensated by intensive its aftershocks. Using a moving window in time, we have observed that the b value gradually increases from 0.8 to 1.0 beginning 1994 until 1999. Whether this anomalously linear increase of the b value is a precursor of the Chi-Chi earthquake deserves further investigations.
In the study of focal mechanisms, we found the larger and deeper earthquakes often exhibit thrust faulting whereas smaller and shallower earthquakes exhibit strike-slip type. The fact that larger earthquakes are dominantly thrust faulting is a reflection of the regional crustal stress regimes in the Chi-Chi source. With respect to the Chelungpu fault, thrust faulting dominates the hanging wall areas to the east, strike-slip faulting near its southern and northern ends, and southeastern side, whereas normal faulting in its central part and to the eastern side of the Central Mountain Range. Furthermore, the relative ratios of the numbers of the three types of focal mechanism are almost constant throughout the three-year period after the Chi-Chi.
Regarding fault plane identification, a traditional way to effectively identify a fault plane is based on aftershock distributions. We have successfully applied several methods of pattern recognition, including earthquake clustering, hypocenter collapsing, principal component analysis, and equal area projection, to determine the true fault plane from the two nodal planes of a focal mechanism. The results of 115 identified fault planes are informative for subsequent studies on possible association of seismic activities with fault structures, including pre-existing faults, new fractures, or underground blind faults.
In the study of crustal stresses, we analyzed the stress patterns and changes of the source region due to the Chi-Chi earthquake by the method of moment tensor summation, where the moment tensor of an individual earthquake is constructed from its focal mechanism solution and a scalar moment derived from the moment-magnitude relationship. The results reveal that although the distributions of seismicity and focal-mechanism patterns are different before and after the 1999 Chi-Chi earthquake, the overall patterns of crustal stresses remain similar. A grid analysis of stress estimation has established a database of empirical focal mechanisms, moment tensors, and crustal stresses of the Chi-Chi source region.
In summary, the results of composite analyses of seismic activities, focal mechanisms, and crustal stresses can be summed up as follows. In a shear stress environment, the strike-slip deformation is usually concentrated around known faults, often induces earthquakes with small magnitudes. In a compressional stress environment, the thrust deformation often induces earthquakes which will distribute in broad areas and usually triggers complex types of focal mechanisms on pre-existing faults with significant magnitudes.
Aki, K., and P. G. Richards, 2002, Quantitative Seismology, 2nd ed., University Science Books, Sausalito, California, 37-62 pp.
Angelier, J., 1979, Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, 717-726.
Angelier, J., 1984, Tectonic analysis of fault slip data sets. J. Geophys. Res., 89, 5835-5848.
Angelier, J., H. T. Chu, and J. C. Lee, 1997, Shear concentration in collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-143.
Apperson, K. D., 1991, Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs, Science, 254, 670-678.
Biq, C., 1972, Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China., 15, 65-75.
Bott, M. H. P., 1959, The mechanics of oblique slip faulting, Geol. Mag., 96, 109-117.
Brune, J. N., 1968, Seismic moment, seismicity, and rate of slip along major fault zones, J. Geophys. Res., 73, 777-784.
Chi, W. C., D. Dreger, and A. Kaverina, 2001, Finite-source modeling of the 1999 Taiwan (Chi-Chi) Earthquake derived from a dense strong-motion network, Bull. Seism. Soc. Am., 91, 1144-1157.
Chi, W. C., and D. Dreger, 2002, Finite fault inversion of the September 25, 1999 (Mw = 6.4) Taiwan earthquake: Implications for GPS displacements of Chi-Chi, Taiwan earthquake sequence. data, Geophys. Res. Lett., 29, 1694.
Fitzenz, D. D., and S. A. Miller, 2004, New insights on stress rotations from a forward regional model of the San Andreas Fault system near its Big Bend in southern California, J. Geophys. Res., 109, B08404, doi:10.1029/2003JB002890.
Frohlich, C., 1992, Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms, Phys. Earth Planet. Inter., 75, 193-198.
Frohlich, C., and K. D. Apperson, 1992, Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11, 279-296.
Gephart, J. W., and Forsyth, D. W., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res., 89, 9305-9320.
Gephart, J. W., 1985, Principal stress directions and the ambiguity in fault plane identification from focal mechanisms. Bull. Seism. Soc. Am., 75, 621-625.
Gephart, J. W., 1990a, FMSI:A fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor. Computers & Geosciences, 16, 953-989.
Gephart, J. W., 1990b, Stress and the direction of slip on fault planes. Tectonics, 9, 845-858.
Hardebeck, J. L., and E. Hauksson, 1999, Role of fluids in faulting inferred from stress field signatures, Science, 285, 236-239.
Hardebeck, J. L., and E. Hauksson, 2001, Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res., 106, 21859-21882.
Hardebeck, J. L., and P. M. Shearer, 2002, A new method for determining first-motion focal mechanisms, Bull. Seismol. Soc. Am., 92, 2264-2276.
Hardebeck, J. L., and P. M. Shearer, 2003, Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes, Bull. Seismol. Soc. Am., 93, 2434-2444.
Hardebeck, J. L., and A. J. Michael, 2004, Stress orientations at intermediate angles to the San Andreas Fault, California, J. Geophys. Res., 109, B11303, doi:10.1029/2004JB003239.
Hauksson, E., 1994, State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence, Bull. Seismol. Soc. Am., 84, 917-934.
Herrmann, R. B., 1975, A student''s guide to the use of P and S wave data for focal mechanism determination. Earthquake notes, 46, 29-39.
Ho, C. S., 1988, An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, 192 pp., Min. of Econ. Aff., Taipei, Taiwan, Republic of China.
Hu, J. C., and J. Angelier, 2001, 3-D distinct element analysis accounts for stress permutations in brittle tectonics, Program Proceeding of 2001 Joint Geosciences Assembly, 60-61.
Hu, J. C., and J. Angelier, 2004, Stress permutations: 3-D distinct element analysis accounts for a common phenomenon in brittle tectonics, J. Geophys. Res., 109, B09403, doi:10.1029/2003JB002616.
Jackon, J., and D. Mckenzie, 1988, The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J., 93, 45-73.
Jiang, J. S., B. S. Huang, Y. B. Tsai, and T.C. Shin , 2004, Changes in Regional Strain and Stress Patterns Associated with the 1999 Chi-Chi, Taiwan, Earthquake Based on Focal Mechanism Data. AGU Fall Meeting, San Francisco, USA.
Jiang, J. S., B. S. Huang, Y. B. Tsai, and T. C. Shin, 2005, The Patterns and Changes in Crustal Stress before and after the 1999 Chi-Chi, Taiwan, Earthquake. Chapman Conference on Radiated Energy and the Physics of Earthquake Faulting, Portland, Maine, USA.
Jones, R. H., and R. C. Stewart, 1997, A method for determining significant structures in a cloud of earthquakes, J. Geophys. Res., 102, 8245-8254.
Jones, L. M., 1998, Focal mechanisms and the state of stress on the San Andreas Fault in Southern California, J. Geophys. Res., 93, 8869-8891.
Jost, M. L., and R. B. Herrmann, 1989, A student''s guide to and review of moment tensors, Seismol. Res. Lett., 60, 37-57.
Kao, H., and P. R. Jian, 1999, Source paramaters of regional earthquakes in Taiwan: July 1995 - December 1996, TAO, 10, 585-604.
Kao, H., and W.-P. Chen, 2000, The Chi-Chi earthquake sequence: Active out-of sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Knopoff, L., and M. J. Randall, 1970, The compensated linear vector dipole: A possible mechanism for deep earthquakes, J. Geophys. Res., 75, 4957-4963.
Kostrov, B. V., 1974, Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl., 1, 23-40.
Lai Y. C., B. S. Huang, H. Y. Yen, K. C. Chen, Y. L. Huang, Y. R. Chen and J.S. Jiang, 2005, Array Observations for Narrow-Band Background Noises in the Hualien Area and their Seismological Implications., TAO, 16, 315-329.
Lettis, W. R., D.L. Wells, and J.N. Baldwin, 1997, Empirical observations regarding reverse earthquakes, blind thrust faults, and Quaternary deformation: Are blind thrust faults truly blind?, Bull. Seism. Soc. Am., 87, 1171-1198.
Liang, B., and M. Wyss, 1991, Estimates of orientations of stress and strain tensors based on fault-plane solutions in the epicentral area of the great Hawaii. earthquake of 1868, Bull. Seismol. Soc. Am., 81, 2320-2334.
Lin, C. H., Y. H. Yeh, and Y. B. Tsai, 1985, Determination of regional stress directions in Taiwan from fault plane solutions, Bull. Inst. Earth Sci., Academia Sinica, 5, 67-85.
Lin, C. H., 2001, The 1999 Taiwan earthquake: a proposed stress-focusing, heel-shaped model, Bull. Seism. Soc. Am., 91, 1053-1061.
Lin, C. H., and M. Ando, 2004, Seismological evidence of simultaneous mountain-building and crust-thickening from the 1999 Taiwan Chi-Chi earthquake (Mw=7.6), Earth, Planets and Space, 56, 163-167.
Lisle, R. J., 1988, ROMSA: A basic program for paleostress analysis using fault-striation data, Computers & Geosciences, 14, 255-259.
Lisle, R. J., 1992, New method of estimating regional stress orientations : application to focal mechanism of recent British earthquakes, Geophys. J. Int., 110, 276-282.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and J. Mori, 1999, The Chi-Chi, Taiwan Earthquake: Large Surface Displacements on an Inland Thrust Fault, EOS, 80, 605-611.
Ma, K. F., T. R. Song, S. J. Lee, and S. I. Wu, 2000, Spatial Slip Distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake: Inverted from Teleseismic Data, Geophy. Res. Let., 27, 3417-3420.
Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu, 2001, Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1069-1087.
Ma, K. F., and S. I. Wu, 2001, Quick slip distribution determination of moderate to large island earthquakes using near-source strong motion waveforms, Earthquake Engin. And Earthquake Seism., 3, 1-10.
Ma, K. F., C. H. Chan, and R.S. Stein, 2005, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110, doi:10.1029/2004JB003389.
Maeda, N., 1992, A method of determining focal mechanisms and quantifying the uncertainty of the determined focal mechanisms for microearthquakes, Bull. Seismol. Soc. Am., 82, 2410-2429.
Mckenzie, D. P., 1969, The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59, 591-601.
Michael, A. J., 1984, Determination of stress from slip data: Fault and folds, J. Geophys. Res., 89, 11517-11526.
Michael, A. J., 1987, Use of focal mechanisms to determine stress: A control study. J. Geophys. Res., 92, 357-368.
Pezzopane, S. K., and Wesnousky S. G., 1989, Large earthquakes and crustal deformation near Taiwan., J. Geophys. Res., 94, 7250-7264.
P. Reasenberg, 1985, Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.
Rau, R. J., F. T. Wu, and T. C. Shin, 1996, Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seism. Soc. Am. 86, 1270-1283.
Reasenberg, P. A., and Simpson, R. W., 1992, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1686-1690.
Seno, T., 1977, The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42, 209-226.
Seno, T., S. Stein, and A. E. Gripp, 1993, A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941-17948.
Shaw, J. H., and P. M. Shearer, 1999, An elusive blind-thrust fault beneath metropolitan Los Angels, Science, 283, 1516-1518.
Stein, R. S., 1999, The role of stress transfer in earthquake occurrence, Nature, 402, 605-609.
Stein, R. S., and M. Wysession, 2003, An Introduction to Seismology, Earthquakes, and Earth Structure, 215-285.
Suppe, J., and J. Jamson, 1979, Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petro. Geol. Taiwan, 16, 1-18.
Teng, L., 1990, Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan, Tectonophysics, 183, 57-76.
Townend, J., and M. D. Zoback, 2004, Regional tectonic stress near the San Andreas Fault in central and southern California, Geophys. Res. Lett., 31, L15S11, doi:10.1029/2003GL018918.
Wang, C. Y., C. H. Chang, and H. Y. Yen, 2000, An Interpretation of the 1999 Chi-Chi Earthquake in Taiwan Based on Thin-Skinned Thrust Model. TAO, 11, 609-630.
Wang, J., 1988, b vaule of shallow earthquakes in Taiwan. Bull. Seismol. Soc. Am., 78, 1243-1254.
Wang, J. H., 1992, Magnitude scales and their relations for Taiwan earthquakes: A review, TAO, 3, 449-468.
Wu, C., M. Takeo, and S. Ide, 2001, Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with multifault model, Bull. Seism. Soc. Am., 91, 1128-1143.
Wu, F.T., and R.J. Rau, 1998, Seismotectonics and identification of potential seismic source zones in Taiwan, TAO, 9, 739-754.
Wyss, M., B. Liang, W. R. Tanigawa, and X. Wu, 1992, Comparison of orientation of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, J. Geophys. Res., 97, 4769-4790.
Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, 1991, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280.
Yu, S. B., H. Y. Chen, and L. C. Kuo, 1997, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Zoback, M. D., and G. C. Beroza, 1991, Heterogeneous slip and stress release ine the Loma Prieta earthquake 2: Evidence for near frictionless faulting and complete co-seismic stress drop, (abstract), Eos Trans. AGU, 72, 44, Fall Meeting suppl., 309.