| 研究生: |
劉保淇 Pao-chi Liu |
|---|---|
| 論文名稱: |
煤層孔隙率與滲透率特性評估 Characteristic studies of coal porosity and permeability |
| 指導教授: |
蔡龍珆
Loung-yie Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 滲透率異向比 、滲透率 、孔隙率 、煙煤 、煤層特性 |
| 外文關鍵詞: | permeability anisotropy, permeability, porosity, bituminous coal, coal characteristic |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
孔隙率與滲透率為評估煤層內流體流動性之重要參數,尤其滲透率異向性對於煤層氣開採扮演了重要的角色。本研究以室內試驗方法探討承受應力狀態下之滲透率異向性,並綜合煤層特性及微觀構造解釋孔隙率與滲透率之控制因素,據以提供未來針對煤層進行二氧化碳-強化採收煤層甲烷之評估。試體選用煤層甲烷蘊藏量相當高的澳洲Bowen與Sydney盆地之成熟度相近的煙煤,探討於承受不同圍壓(5~40MPa)下平行與垂直煤層層面之滲透率以及煤層特性與微觀構造對孔隙率與滲透率之影響。研究結果顯示,平行層面之煤樣滲透率約介於10-16~10-22m2,垂直煤樣層面滲透率約介於10-18~10-22m2,且承受不同圍壓下煤樣之滲透率異向比有明顯變化。以平行層面之煤樣為例,具有亮煤之煤樣滲透率約介於10-16~10-19m2,至於以暗煤為主者,其滲透率約介於10-19~10-22m2;此外,冪次律適用於表示有效圍壓與滲透率之關係,平行與垂直層面之初始滲透率分別介於1×10-12~6×10-19m2與5×10-16~1×10-21m2;初始孔隙率主要介於3.2~13.7%之間,且與滲透率呈現正相關,但趨勢較不明顯,推測受到煤岩成熟度、煤素質、煤岩類型、裂隙與割理之影響。以電子顯微鏡觀測發現富含惰煤素之暗煤結構不均勻導致滲透性差,而富含鏡煤素之亮煤具有均勻結構且利於割理發育,可提昇滲透性,利於煤層甲烷氣體回收,顯示煤岩類型之微觀構造為影響滲透率並導致滲透率異向性之主因。
Porosity and permeability of coal are important parameters for considering fluid flow properties through coal seams. Both porosity and permeability are affected by tectonic stress and coal characteristics, anisotropy of permeability also plays an important role on coal bed methane (CBM) recovery. This study tried to establish the relation among coal characteristics, porosity and permeability under confining pressure (5~40MPa). Eight bituminous coal samples with high CBM potential from Bowen and Sydney basin, Australia were examined in this study. The results indicate that permeabilities parallel to bedding varied from 10-16 to 10-22m2 whereas permeabilities perpendicular to bedding varied from 10-18 to 10-22m2. The lithotype of the samples is the most important factor in affecting their anisotropy of permeability. In addition, power law for describing the pressure-dependent permeability can be used to fit the experiment results. The initial permeability is ranging from 1×10-12~6×10-19m2 for parallel to bedding, and 5×10-16~1×10-21m2 for perpendicular to bedding. Porosity varied from 3.2~13.7%, positively correlated with permeability. Both porosity and permeability were affected by maturity, maceral and lithotype of coal, as well as cleat and/or microfractures. SEM showed that the high permeability coals were mostly bright-banded coals (rich in vitrinite) with well-developed cleats. These results indicate that bright coal possesses the best potential for gas transmission, in considering CO2-ECBM.
〔1〕Saghafi, A., Faiz, M.M., Roberts, D., “CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia”, International Journal of Coal Geology, Vol 70, 240-254, 2007.
〔2〕Faiz, M., Saghafi, A., Sherwood, N., Wang, I., “The influence of petrological properties and burial history on coal seam methane reservoir characterization, Sydney Basin, Australia”, International Journal of Coal Geology, Vol 70, 193-208, 2007.
〔3〕Pinetown, K.L., Faiz, M.M., Saghafi, A., Stalker, L., van Holst, J., “Coal seam gas distribution in the Hunter coalfield, Sydney Basin”, PESA Eastern Australasian Basins Symposium III, 399-402, Australia, 2008.
〔4〕Durucan, S., Shi, J.Q., “Enhanced coalbed methane recovery and CO2 sequestration in coal: An overview of current research at Imperial college”, First international forum on geologic sequestration of CO2 in deep, unmineable coalseams “Coal-Seq I”, Houston, Taxas, America, March 2002.
〔5〕Scott, R.R., “Assessment of CO2 sequestration and ECBM potential of U.S. coalbeds”, U.S. Department of Energy Report, 26, 2003.
〔6〕Busch, A., Gensterblum, Y., Krooss, B.M., “Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures”, International Journal of Coal Geology, Vol 55, 205-224, 2003.
〔7〕Busch, A., Gensterblum, Y., Krooss, B.M., Siemons, N., “Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: an experimental study”, International Journal of Coal Geology, Vol 66, 53-68, 2006.
〔8〕Clarkson, C.R., Bustin, R.M., “Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera”, International Journal of Coal Geology, Vol 33, pp. 135-151, 1997.
〔9〕Gamson, P.D., Beamish, B.B., Johnson, D.P., “Coal microstructure and micropermeability and their effects on natural gas recovery”, Fuel, Vol 72, 87-99, 1993.
〔10〕http://www.peabodyenergy.com/Operations.
〔11〕Martin, A.M., Australia’s identified mineral resources, Australian Government Geoscience Australia Resources, Energy and Tourism Portfolio Minister for Resources, 20, 2008.
〔12〕Mutton, A.J (Compiler)., Queensland coals 14th edition, Queensland department of natural resources and mines, 2003.
〔13〕NSW department of primary industries: geological overview, http://www.dpi.nsw.gov.au/minerals/geological/overview/regional/sedimentary-basins/sydbasin.
〔14〕Cui, X., Bustin, R.M., Dipple, G., “Selective transport of CO2, CH4, and N2: insights from modeling of experimental gas adsorption data”, Fuel, Vol 83, 293-303, 2004.
〔15〕Rodrigues, C.F., Lemos de Sousa, M.J., “The measurement of coal porosity with different gases”, International Journal of Coal Geology, Vol 48, 245-251, 2002.
〔16〕Saghafi, A., Faiz, M., Roberts, D., “CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia”, International Journal Coal Geology, Vol 70, pp. 240-254, 2007.
〔17〕Yu, H.G., Yuan, J., Guo, W.J., Cheng, J.L., Hu, Q.T., “Apreliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection”, International Journal of Coal Geology, Vol 73, pp. 156-166, 2008.
〔18〕Katyal, S., Valix, M., Thambimuthu, K., “Study of parameters affecting enhanced coal bed methane recovery”, Energy Sources, Vol 29, part A , pp. 193-205, 2007.
〔19〕Marco, M., Ronny, P., Giuseppe, S., “Enhanced coalbed methane recovery”, The Journal of Supercritical Fluids, Vol47, 619-627, 2009.
〔20〕Hunt, J.M., “Petroleum geochemistry and geology: San Francisco”, W. H. Freeman and Company, 617, 1979.
〔21〕秦勇,“煤層氣可採性及其有利區評價方法”,台灣中國石油公司交流,苗栗探採研究所,民國九十八年三月。
〔22〕Terzaghi, K., Theoretical Soil Mechanics, John Wiley and Sons, New York, 1943.
〔23〕梁冰,孫可明,低滲透煤層氣開採理論及其應用,科學出版社,民國九十五年。
〔24〕Athy, L.F., “Density, porosity, and compaction of sedimentary rocks” The American Association of Petroleum Geologists Bulletin, Vol 14, 1-24, 1930.
〔25〕Li, X., Nie, B.S., Ren, T., “Analysis and research on influencing factors of coal reservoir permeability”, Coal Operators’s Conference, 197-201, Australia, February 2008.
〔26〕Enerver, J.R., “The status of coalbed methane research and development in Australia: Proceedings”, Intergas 95, International Unconventional Gas Symposium, 321-330, Tuscaloosa, Alabama, 1995.
〔27〕Bustin, R.M., “Importance of fabric and composition on the stress sensitivity of permeability in some coals, northern Sydney Basin, Australia: relevance to coalbed methane exploitation”, The American Association of Petroleum Geologists Bulletin, Vol 81, 1894-1908, 1997.
〔28〕McKee, C.R., Bumb, A.C., Koenig, R.A., “Stress-dependent permeability and porosity and other geologic formations”, SPE Formation Evaluation, 81-91, 1988.
〔29〕Gash, P.D., Beamish, B.B., Johnson, D.P., “The effects of clea orientation and confining pressure on cleat porosity, permeability and relative permeability”, Proceedings of the International Coalbed Methane Symposium, 247-256, University of Alabama, Tuscaloosa, Alabama, 1993.
〔30〕孫立中,“抑制鏡煤素反射率之量測成因-以分離台灣裕峰煤為例”,國立中央大學地球物理研究所,博士論文,民國八十九年。
〔31〕Magoon, L.B., Dow, W.G., “The petroleum system-from source to trap”, The American Association of Petroleum Geologists, 95-97, 1994.
〔32〕Peters, K.E., Cassa, M.R., “The petroleum system-from source to trap, applied source-rock geochemistry, in: Magoon L. B., Dow W. G.(Eds.)”, American Association of Petroleum Geologists Memoir , Vol 60, 93-120, 1994.
〔33〕Ting, F.T.C., “Petrographic techniques in coal analysis. In: Karr, C., Jr. (Eds.), Analytical Methods for Coal and Coal Products”, Academic Press, Inc., New York, 3-26, 1978.
〔34〕Tissot, B.P., Welte, D.H., “Petroleum formation and occurrence;a New approach to oil gas exploration”, 699, Berlin, Heidelberg, NewYork, 1984.
〔35〕Stach, E., Mackowsky, M.T., Teichumuller, M., Taylor, G.H., Chandra, D., Teichmuller, R., “Stach’s textbook of coal petrology”, Berlin, Gebruder Borntraeger, 1982.
〔36〕Espitalie, J., Deroo, G., Marquis, F., “La pyrolyse Rock-Eval et ses applications”, Revue Institut Franc- ais du Pe’ trole, Part I, 40, 563-578; Part II, 40, 755-784, 1985.
〔37〕Baskin, D.K., “Atomic H/C ration of Kerogen as an estimate of thermal maturity and organic matter conversion”, The American Association of Petroleum Geologists Bulletin, Vol 81, 1431-1450, 1997.
〔38〕Huang, H., Wang, S., Wang, K., Klein, M. T., Calkins, W.H., “Thermogravimetric and Rock-Eval studies of coal properties and coal rank”, Energy and Fuels, Vol 13, 396-400, 1999.
〔39〕Australian Coal Association (ACA), Coal and its uses, 2009, http://www.australiancoal.com.au/coal-and-its-uses.aspx.
〔40〕Stopes, M.C., “On the petrology of banded bituminous coals”, Fuel, Vol 14, 4-13, 1935.
〔41〕van Krevelen, D.W., “Coal: Typology-Chemistry-Physics-Constitution”, Elsevier Scientific Publishing Co., 514, Amsterdam, Oxford, New York, 1981.
〔42〕孫立中,“臺灣竹苗地區之煤岩學及油氣生成研究”,國立中央大學地球物理研究所,碩士論文,民國八十一年。
〔43〕陳培源,礦物學名詞,第二版,國立編譯館,民國八十五年。
〔44〕郭政隆,“鏡煤素反光率在台灣西部油氣探勘的應用”,國立台灣大學地質學研究所,博士論文,民國八十六年。
〔45〕van Krevelen, D.W., Coal, Elsevier Scientific Publishing Co., Amsterdam-London-New York-Princeton, 1961.
〔46〕Prinz, D., Littke, R., “Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water”, Fuel, Vol 84, 1645-1652, 2005.
〔47〕Closer, J., “Natural fractures in coal”, AAPG Studies in Geology, Vol 38, 119-132, 1993.
〔48〕Gamson P.D., Beamish B.B., Johnson D.P., “Coal microstructure and micropermeability and their effects on natural gas recovery”, Fuel, Vol 72, 87-99, 1993.
〔49〕Wilfrido S.A., Maria M., Arndt S., “Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana”, International Journal of Coal Geology, Vol 72, 187-208, 2007.
〔50〕許瑞育,“沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象”,國立中央大學應用地質研究所,碩士論文,民國九十六年。
〔51〕吳文傑,“應力歷史相關之沉積岩孔隙率模型” ,國立中央大學應用地質研究所,碩士論文,民國九十七年。
〔52〕ASTM, Standard D-279, ASTM Standard Manual, part 26, 350-354, 1977.
〔53〕ASTM, Standard D-2799. Microscopical determination of volume percent of physical components in a polished specimen of coal, ASTM, Philadephia, Pa, 1-4, 1980.
〔54〕Waples, D.W., “Geochemistry in petroleum exploration”, D. Reidel Publishing Co. Dordrecht Boston Lancaster, 232.
〔55〕Witt K.J., Brauns J., “Permeability-anisotropy due to particle shape”, J. Geotech. Eng., Vol 109(9), 1181-1187, 1983.
〔56〕Scholes, O.N., Clayton, S.A., Hoadley, A.F.A., “Permeability anisotropy due to consolidation of compressible porous media”, Transport in Porous Media, Vol 68, 365-387, 2007.
〔57〕Chapuis, R.P., Grill, D.E., “Hydraulic anisotropy of homogeneous soils and rocks: influence of the densification process”, Bulletin of Engineering Geology and the Environment, Vol 39, 75-86, 1989.
〔58〕Rice, P.A., Fontugne, D.J., Latini, R.G., Barduhn, A.J., “Anisotropic permeability in porous media”, Industrial and Engineering Chemistry, Vol 62 (2), 23-31, 1979.
〔59〕Kiyama, T., Kita, H., Ishijima, Y., Yanagidani, T., Aoki, K., Sato, T., “Permeability in anisotropic granite under hydrostatic compression and triaxial compression including post-failure region”, Rock Mech., Vol 2, 1643-1650, 1996.
〔60〕Crosdale, P.J., Beamish, B.B., “Methane diffusivity at South Bulli NSW and Central QLD collieries in relation to coal maceral composition”, International Symposium-Cum-Workshop on Management and Control of High Gas Emissions and Outbursts in Underground Coal Mines, 363-367, National Organising Committee of the Symposium, Wollongong, 1995.