跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭名翔
Ming-hsiang Cheng
論文名稱: 6061鋁合金於累進式背擠製成型研究
指導教授: 葉維磬
Wei-ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 140
中文關鍵詞: 6061擠製
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由劇烈塑性變形(Severe plastic deformation, SPD)方法達到超細晶粒(Ultrafine-grained, UFG)材料已被廣泛研究,本文採取由Fatemi-Varzaneh[20]等人提出的累進式背擠製(Acumulative back extrusion, ABE)於室溫對6061鋁合金加工。透過實驗與模擬,搭配不同的沖頭比(Deformation ratio,DR)與內沖頭行程(Die stroke,DS),並配合硬度、微觀結構與有限元素模擬分析,探討ABE擠製過程的機制,與不同實驗參數造成的效應。經由有限元素模擬分析與實驗結果比較獲得良好的一致性,DR與DS會影響材料加工硬化與硬度均勻程度的變化,而本研究中能夠產生奈米等級的晶粒,但大部分晶界仍保持在低角度,顯示在仍無法達到超細晶粒的要求。


    To reach the ultrafine-grained(UFG) material from severe plastic deformation(SPD) method has been widely investigated.The present work used the AA60
    61 in the room temperture processing of accumulative back extrusion(ABE) that
    was one of the SPD techniqus was originally proposed by Fatemi-Varzaneh[20].
    To investigate the mechanics of the processing of the ABE using the experi-
    ment and the finite element method(FEM) with different deformatio ratio(DR),
    Die stroke(DS) and pass number.Then,the microhardness and the microstructure
    were utilized to study with the effective strain(ES) and shear strain(ES). Compa
    ring the FEM and experimental results showed good agreement in the ES conto-
    ur and microhardness. The DR and DS both has the great effect in the mechanic-
    al properties of the workpiece.Althrough the part the grain size has high ES thro-
    ugh one to three pass all can reach the nanoscale in the microstructure result,the
    most of grain boundaries still remained low anglar grain boundry.It means the high stacking fault energy of AA6061 through ABEed processing at room temp-
    erture still can’t satisfied with the UFG.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1累進式背擠製 3 1.3研究目的與動機 7 第二章 基本概要 8 2.1鋁合金簡介 8 2.2對於6061系列機械性質影響的合金成分 10 2.3超細晶粒(UFG) 11 2.4劇烈塑性變形 13 2.5電子背向繞射 14 2.6晶粒細化機制 16 2.6.1回復 16 2.6.2再結晶 18 2.6.3晶粒分割 21 第三章 實驗設備與方法 23 3.1實驗設備 23 3.1.1累進式背擠製模具介紹 23 3.2實驗方法 23 3.2.1實驗參數 23 3.2.2試片材料 24 3.2.3熱處理 24 3.2.4潤滑條件 24 3.3實驗步驟 25 3.4實驗量測 26 3.4.1硬度試驗 26 3.4.2硬度均勻性指數 27 3.4.3拉伸試驗 28 3.4.4光學顯微鏡觀測(OM) 29 3.4.5電子背相散射繞射觀測(EBSD) 29 第四章 實驗結果與討論 31 4.1 ABE製程成型機制探討 31 4.1.1概要 31 4.1.2有限元素模擬設定 31 4.1.3有限元素模擬分析 33 4.1.4模擬結果與OM觀測比較 39 4.2 ABE製程對硬度分布影響 41 4.2.1概要 41 4.2.2微硬度試驗分析 41 4.2.3實驗與模擬結果討論 45 4.3 ABE製程對微結構探討 48 4.3.1概要 48 4.3.2 OM觀測結果 48 4.3.3 EBSD觀測加工前胚料 48 4.3.4 EBSD觀測經ABE加工胚料 49 4.3.5 EBSD觀測經熱處後之加工胚料 50 第五章 結論與建議 52 5.1結論 52 5.2建議 53 參考文獻 55 附件…………………………………………………………………………...111

    [1] R. Z. Valiev, "Structure and mechanical properties of ultrafine-grained metal," Materials Science and Enginnering:A, Vols. 234-236, pp. 59-66, 8 1997.
    [2] Y. Huang and T. G. Langdon, "Advances in ultrafine-grained materials," Materialstoday, vol. 16, pp. 85-93, 3 2013.
    [3] S. Fatemi-Varzaneh and . A. Zarei-Hanzaki, "Accumulative back extrusion (ABE) processing as a novel bulk deformation method," Materials Science and Engineering A, vol. 504, pp. 104-106, 2009.
    [4] M. Reihanian, R. Ebrahimi, M. Moshksar, D. Terada and N. Tsuji, "Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP)," Materials Characterization, vol. 59, pp. 1312-1323, 9 2008.
    [5] M. Richert, Q. Liu and N. Hansen, "Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression," Materials Science and Engineering: A, vol. 260, pp. 275-283, 2 1999.
    [6] Y. Beygelzimer, V. Varyukhin, V. Synkov and D. Orlov, "Useful properties of twist extrusion," Materials Science and Engineering: A, vol. 503, pp. 14-17, 3 2009.
    [7] A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 8 2008.
    [8] H. Alihosseinia, G. Faraji , A. Dizaji and K. Dehghani, "Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)," Materials Characterization, vol. 38, pp. 14-21, 6 2012.
    [9] N. Haghdadi, A. Zarei-Hanzaki and D. Abou-Ras, "Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 584, pp. 73-81, 2013.
    [10] P. Shaterani, A. Zarei-Hanzaki, S. Fatemi-Varzaneh and S. Hassas-Irani, "The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion," Materials and Design, vol. 58, pp. 535-542, 2014.
    [11] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi and A. A. Roostaei, "Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy," Journal of Alloys and Compounds, vol. 507, pp. 207-214, 2010.
    [12] S. Fatemi-Varzaneh , A. Zarei-Hanzaki and S. Izadi, "Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy," J Mater Sci, vol. 46, pp. 1937-1944, 2011.
    [13] G. Faraji, H. Jafarzadeh, H. Jeong, M. Mashhadi and H. Kim, "Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy," Materials and Design, vol. 35, pp. 251-258, 2012.
    [14] N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M. Maghsoudi, A. Ghorbani and M. Kawasaki, "An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 595, pp. 179-187, 2014.
    [15] P. Berbon, N. Tsenev, R. Valie, M. Furukawa, Z. Horita, M. Nemoto Nemoto and T. Langond, "Fabrication of bulk ultrafine-grained materials through intense plastic straining," Metall. and Mater. Trans. A, vol. 29A, p. 2237, 1998.
    [16] M. Kawasaki and T. G. Langdon, "Principles of superplasticity in ultrafine-grained materials," Journal of Materials Science, vol. 42, pp. 1782-1796, 3 2007.
    [17] 王約翰, "鋁合金材料晶相分析最佳化研究", 正修科技大學碩士論文, 2010.
    [18] 鄭存閔, "噴覆成形語連續鑄造鋁合金之塑性加工性及機械性質的研究", 國立成功大學碩士論文, 7, 2004.
    [19] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, "Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE," Scripta Materialia, vol. 36, p. 681, 1997.
    [20] M. Mabuchi, H. Iwasaki and K. Higashi, "Microstructure and mechanical properties of 5056 Al alloy processed by Equal-channel angular extrusion," Nanostructured Mater, vol. 8, p. 1105, 1997.
    [21] V. M. Segal, "Materials processing by simple shear," Mater. Sci. and Eng. A, vol. 197, p. 157, 1995.
    [22] R. Z. Valiev, R. Islamgaliev and I. Alexandrov, "Bulk nanostructured materials from severe plastic deforemation," Progress in Materials Science, vol. 45, p. 103, 2003.
    [23] 李明富, "利用 ECAE 方法發展次微米晶粒材料之研究", 中山大學碩士論文, pp. 5-6, 1997.
    [24] A. Korbel and M. Richert, "Formation of shear bands during cyclic deformation of aluminum," Acta Metall, vol. 33, pp. 1971-1978, 1985.
    [25] M. Mabuchi, K. Kubota and K. Higashi, "New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bar," Mater Trans JIM, vol. 36, p. 1249, 1995.
    [26] R. Schwarz and W. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals," Phys. Rev. Lett., vol. 51, pp. 415-418, 1983.
    [27] 孫佩鈴, "純鋁經大量塑性變形生成細晶粒之研究", 中山大學博士論文, pp. 28-32, 1999.
    [28] 廖忠賢與黃志青, "科學新知", p. 43, 1998.
    [29] V. Randle, "Microstructure Determination and Its Applications," The Institute of Metals, 1992.
    [30] 周詩博, "冷軋鋁箔之再結晶組織與機械性質", 中山大學碩士論文, pp. 11-12, 2002.
    [31] F.J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomenon".
    [32] Taku Sakai, Andrey Belyakov, Rustam Kaibyshev, Hiromi Miura and John J. Jonas, "Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions," Progress in Materials Science, pp. 103-207, 2014.
    [33] 林敬量, "商業純鋁在不同溫度經平變硬變後之組織研究" 國立中山大學碩士論文, 2005.
    [34] 丁仕旋, "商用純鋁在50%軋延量下之溫加工變形組織" 國立中山大學碩士論文, 2003.
    [35] 王郁雲, "變形溫度對等徑轉角擠製純鋁之微結構影響" 國立中山大學碩士論文, 2003.
    [36] D. A. Hughes and A. Godfrey, "Dislocation structures formed during hot and cold working," Matels & Material Society, p. 23, 1998.
    [37] B. Bay, N. Hansen,, A. Huhges and D. Kuhlmann-Wilsdorf, "Evolution of f.c.c. deformation structure in polyslip," Acta Matell. Mater., p. 205, 1992.
    [38] 陳弘志, "A1070在累進式背擠製下的機械性質與微結構之研究", 中央大學碩士論文, 2014.
    [39] V. Patil Basavaraj, Uday Chakkingal and T. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of Materials Processing Technology, vol. 209, pp. 89-95, 2009.
    [40] A. B557M-84, "Standard methods of tension testing of wrought and cast aluminium and magnesium alloy product," Annual Book of ASTEM Standards 02.02.,, pp. 466-476, 1995.
    [41] R. Hosford and R. Caddle, "Metal Forming Mechanics and Mrtallurgy".Inc.A Division of Simom & Schuster Englewood Cliffs, NJ 07632, 1983.
    [42] 洪嘉駿, "以鍛粗加工實驗驗證變分上界限法" 中央大學碩士論文, 2007.
    [43] 蕭勝元, "金屬之加工軟化與退火硬化", 大同大學碩士論文, p. 14, 2007.

    QR CODE
    :::