| 研究生: |
顧心元 Shin-Yuan Gu |
|---|---|
| 論文名稱: |
探討阿拉伯芥ETO1基因家族調控乙烯荷爾蒙生合成之研究 Genetic and mechanistic studies of ETO1 gene family in regulation of ethylene biosynthesis in Arabidopsis thaliana |
| 指導教授: |
羅椀升
Wan-Sheng Lo 吳少傑 Shaw-Jye Wu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 乙烯 、蛋白質二聚化 、化學遺傳學 、阿拉伯芥 、基因家族 、白化苗 |
| 外文關鍵詞: | ETO1, protein dimerization, CTL1, etiolated seedlings, ETHYLENE OVERPRODUCER1, CHITINASE LIKE1, ACC oxidase, root elongation |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙烯為分子構造簡單的烴類氣體,參與許多植物的生理現象和發育過程。為了研究乙烯生合成的機制及新發現參與此路徑的基因,我們分析阿拉伯芥ETHYLENE OVERPRODUCER1(ETO1)家族的功能特性及利用化學遺傳學鑑定能回復到eto1特徵(ret)之阿拉伯芥突變株。ETO1、ETO1-LIKE1(EOL1)和EOL2是Broad-complex,Tramtrack,Bric-a-brac(BTB) 蛋白家族,此家族成員共同調節阿拉伯芥中第2型1-氨基環丙烷-1-羧酸合酶之活性。儘管ETO1和EOL1 / EOL2基因製造出結構上相似的蛋白質,但是遺傳研究上發現它們具有相同及相異的功能。ETO1,EOL1和EOL2基因表達具有重疊但不完全相同的組織特異性。然而,在ETO1啟動子的控制下, EOL1和EOL2基因的表達均不能完全回復eto1表型,這說明ETO1和EOL1 / EOL2蛋白質的功能不盡相同。ETO1蛋白本身會形成同源二聚體,亦與EOL蛋白形成異源二聚體。此外,與EOL1 / EOL2蛋白相比,CULLIN3(CUL3)會偏好與ETO1蛋白交互作用。ETO1的BTB結構區域足以與CUL3蛋白交互作用,並且此區域是ETO1同源二聚化所必需的。然而,在阿拉伯芥基因轉殖植物中表現功能性區域互換之嵌合蛋白質,分析顯示ETO1的BTB結構區域是必要的、不可缺少的,但其不足以達到ETO1所有的功能。eto1-5為錯義突變,其異亮氨酸取代了苯丙氨酸,ETO1F466I蛋白削弱了其本身蛋白二聚作用及與EOL蛋白之相互作用,但不影響其與CUL3或ACS5蛋白的結合。我們的研究發現ETO1和EOL1 / EOL2之蛋白質-蛋白質交互作用,此機制在乙烯生合成中扮演至關重要的角色。
Acsinones為抑制乙烯生合成之化學小分子,ret9突變會降低eto1突變株白化苗對acsinones敏感性。經由圖譜定址選殖(map-based cloning)分析RET9,證實為CHITINASE LIKE1(CTL1)之點突變中,其145半胱氨酸被置換為酪氨酸。CTL1為植物細胞壁生合成、抵抗逆境之重要基因。ctl1ret9的白化苗呈現較短的下胚軸及根部。ctl1ret9幼苗經外生性ACC的處理,在抑制主根生長上較為敏感。經遺傳學分析,ctl1ret9在乙烯不敏感突變株組合下證實,完整的乙烯反應途徑對於ctl1ret9影響白化苗的根部型態改變是重要的。此外ctl1突變株的乙烯產量上升,是由於ACC氧化酶(ACO)基因表現量和酵素活性的增加。在ctl1ret9白化苗,與乙烯生物合成及訊息路徑相關的基因均表現量上升。以上結果證明,CTL1會參與調控ACO酵素活性及乙烯訊息路徑,此發現有助於我們理解,當植物細胞壁完整性被破壞時,乙烯影響根部生長的作用機制。
Ethylene is a simple hydrocarbon gas that regulates a number of physiological and developmental events in plants. To understand the mechanism and uncover new genes involved in the ethylene biosynthesis, we studied the functional properties of the Arabidopsis ETHYLENE OVERPRODUCER1 (ETO1) family and characterized the Arabidopsis revert to eto1 9 (ret9) mutants by use of a chemical genetics. ETO1, ETO1-LIKE1 (EOL1) and EOL2 are members of the Broad-complex, Tramtrack, Bric-a-brac (BTB) protein family that collectively regulate type-2 1-aminocyclopropane -1-carboxylic acid synthase (ACS) activity. Despite ETO1 and EOL1/EOL2 encode structurally related proteins, genetic studies suggest that they do have redundant and distinct functions. ETO1, EOL1 and EOL2 exhibit overlapping but distinct tissue-specific expression patterns. Nevertheless, neither EOL1 nor EOL2 can fully complement eto1 phenotype under the control of ETO1 promoter, which suggests differential functions of ETO1 and EOL1/EOL2. ETO1 forms homodimers and heterodimers with EOLs. Furthermore, CULLIN3 (CUL3) interacts preferentially with ETO1. The BTB domain of ETO1 is sufficient for interaction with CUL3 and required for homodimerization. However, domain-swapping analysis in transgenic Arabidopsis suggests that the BTB domain of ETO1 is essential but insufficient for ETO1 full function. The missense mutation in eto1-5 strongly impairs its dimerization and interaction with EOLs but does not affect binding to either CUL3 or ACS5. Our findings reveal the mechanistic role of protein-protein interactions of ETO1 and EOL1/EOL2 that is crucial for their biological function in ethylene biosynthesis.
The ret9 mutant exhibited reduced sensitivity to acsinones in etiolated eto1 seedlings. Map-based cloning of RET9 revealed a cysteine 145 to tyrosine substitution in CHITINASE LIKE1 (CTL1), which is required for cell wall biogenesis and stress resistance in Arabidopsis. Etiolated seedlings of ctl1ret9 showed short hypocotyls and roots. The ctl1ret9 seedlings showed enhanced sensitivity to exogenous ACC to suppress primary root elongation. Genetic analysis of combinational ethylene-insensitive mutants indicated that an intact ethylene response pathway is essential for the alterations in root but not hypocotyl in etiolated ctl1ret9 seedlings. Furthermore, an increased ethylene level in ctl1 mutants was related to elevated activity of ACC oxidase (ACO). Moreover, genes associated with ethylene biosynthesis and response were upregulated in etiolated ctl1ret9 seedlings. These results imply that CTL1 negatively regulates ACO activity and the ethylene response, which thus contributes to understanding a role for ethylene in root elongation in response to perturbed cell wall integrity.
Abeles, F.B., Morgan, P.W. and Saltveit, M.E. (1992) Ethylene in plant biology 2nd edn. San Diego: Academic Press.
Ahmad, K.F., Engel, C.K. and Prive, G.G. (1998) Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S A, 95, 12123-12128.
Ahmad, K.F., Melnick, A., Lax, S., Bouchard, D., Liu, J., Kiang, C.L., Mayer, S., Takahashi, S., Licht, J.D. and Prive, G.G. (2003) Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell, 12, 1551-1564.
Ahn, J., Novince, Z., Concel, J., Byeon, C.H., Makhov, A.M., Byeon, I.J.L., Zhang, P.J. and Gronenborn, A.M. (2011) The Cullin-RING E3 Ubiquitin Ligase CRL4-DCAF1 Complex Dimerizes via a Short Helical Region in DCAF1. Biochemistry-Us, 50, 1359-1367.
Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J.R. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148-2152.
Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M. and Ecker, J.R. (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A, 100, 2992-2997.
Blackwell, H.E. and Zhao, Y. (2003) Chemical genetic approaches to plant biology. Plant Physiol, 133, 448-455.
Bleecker, A.B., Esch, J.J., Hall, A.E., Rodriguez, F.I. and Binder, B.M. (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc Lond B Biol Sci, 353, 1405-1412.
Booker, M.A. and DeLong, A. (2015) Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes. Plant Physiol, 169, 42-50.
Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. and Gorlach, J. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell, 13, 1499-1510.
Buer, C.S., Sukumar, P. and Muday, G.K. (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol, 140, 1384-1396.
Cano-Delgado, A., Penfield, S., Smith, C., Catley, M. and Bevan, M. (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal, 34, 351-362.
Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539-544.
Chang, K.N., Zhong, S., Weirauch, M.T., Hon, G., Pelizzola, M., Li, H., Huang, S.S., Schmitz, R.J., Urich, M.A., Kuo, D., Nery, J.R., Qiao, H., Yang, A., Jamali, A., Chen, H., Ideker, T., Ren, B., Bar-Joseph, Z., Hughes, T.R. and Ecker, J.R. (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife, 2, e00675.
Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J.R. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell, 89, 1133-1144.
Chen, I.J., Lo, W.S., Chuang, J.Y., Cheuh, C.M., Fan, Y.S., Lin, L.C., Wu, S.J. and Wang, L.C. (2013a) A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings. Plant science : an international journal of experimental plant biology, 209, 46-57.
Chen, L.Y., Lee, J.H., Weber, H., Tohge, T., Witt, S., Roje, S., Fernie, A.R. and Hellmann, H. (2013b) Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. Plant Cell, 25, 2253-2264.
Chen, Y.F., Randlett, M.D., Findell, J.L. and Schaller, G.E. (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem, 277, 19861-19866.
Chen, Y.F., Shakeel, S.N., Bowers, J., Zhao, X.C., Etheridge, N. and Schaller, G.E. (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem, 282, 24752-24758.
Cheng, Y., Qin, G., Dai, X. and Zhao, Y. (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci U S A, 104, 18825-18829.
Choo, Y.Y. and Hagen, T. (2012) Mechanism of cullin3 E3 ubiquitin ligase dimerization. PLoS One, 7, e41350.
Chory, J., Nagpal, P. and Peto, C.A. (1991) Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell, 3, 445-459.
Christians, M.J., Gingerich, D.J., Hua, Z., Lauer, T.D. and Vierstra, R.D. (2012) The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis. Plant Physiol, 160, 118-134.
Christians, M.J. and Vierstra, R.D. (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J, 57, 332-345.
Chung, J., Roberts, A.M., Chow, J., Coady-Osberg, N. and Ohh, M. (2006) Homotypic association between tumour-associated VHL proteins leads to the restoration of HIF pathway. Oncogene, 25, 3079-3083.
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16, 735-743.
Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad, K. (1993) Plant chitinases. Plant J, 3, 31-40.
Curtis, M.D. and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol, 133, 462-469.
Cushman, S.J., Nanao, M.H., Jahng, A.W., DeRubeis, D., Choe, S. and Pfaffinger, P.J. (2000) Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol, 7, 403-407.
De Rybel, B., Audenaert, D., Vert, G., Rozhon, W., Mayerhofer, J., Peelman, F., Coutuer, S., Denayer, T., Jansen, L., Nguyen, L., Vanhoutte, I., Beemster, G.T., Vleminckx, K., Jonak, C., Chory, J., Inze, D., Russinova, E. and Beeckman, T. (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol, 16, 594-604.
Dejonghe, W. and Russinova, E. (2017) Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol, 174, 5-20.
Denness, L., McKenna, J.F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C. and Hamann, T. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol, 156, 1364-1374.
Ellis, C., Karafyllidis, I., Wasternack, C. and Turner, J.G. (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell, 14, 1557-1566.
Ellis, C. and Turner, J.G. (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 13, 1025-1033.
Errington, W.J., Khan, M.Q., Bueler, S.A., Rubinstein, J.L., Chakrabartty, A. and Prive, G.G. (2012) Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure, 20, 1141-1153.
Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S. and Hofte, H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell, 12, 2409-2424.
Figueroa, P., Gusmaroli, G., Serino, G., Habashi, J., Ma, L.G., Shen, Y.P., Feng, S.H., Bostick, M., Callis, J., Hellmann, H. and Deng, X.W. (2005) Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell, 17, 1180-1195.
Furukawa, M., He, Y.J., Borchers, C. and Xiong, Y. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol, 5, 1001-1007.
Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S. and Vierstra, R.D. (2004a) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. P Natl Acad Sci USA, 101, 6803-6808.
Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S. and Vierstra, R.D. (2004b) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A, 101, 6803-6808.
Garcia, M.J., Romera, F.J., Lucena, C., Alcantara, E. and Perez-Vicente, R. (2015) Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies. Plant Physiol, 169, 51-60.
Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res, 20, 1425.
Gingerich, D.J., Gagne, J.M., Salter, D.W., Hellmann, H., Estelle, M., Ma, L. and Vierstra, R.D. (2005) Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem, 280, 18810-18821.
Gingerich, D.J., Hanada, K., Shiu, S.H. and Vierstra, R.D. (2007) Large-scale, lineage-specific expansion of a bric-a-brac/tramtrack/broad complex ubiquitin-ligase gene family in rice. Plant Cell, 19, 2329-2348.
Grefen, C. and Blatt, M.R. (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). BioTechniques, 53, 311-314.
Guo, H. and Ecker, J.R. (2003a) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667-677.
Guo, H.W. and Ecker, J.R. (2003b) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667-677.
Guzman, P. and Ecker, J.R. (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 2, 513-523.
Ha, C.M., Jun, J.H., Nam, H.G. and Fletcher, J.C. (2004) BLADE-ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana. Plant Cell Physiol, 45, 1361-1370.
Hamann, T., Bennett, M., Mansfield, J. and Somerville, C. (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant Journal, 57, 1015-1026.
Hauser, M.T., Morikami, A. and Benfey, P.N. (1995) Conditional root expansion mutants of Arabidopsis. Development, 121, 1237-1252.
He, W., Brumos, J., Li, H., Ji, Y., Ke, M., Gong, X., Zeng, Q., Li, W., Zhang, X., An, F., Wen, X., Li, P., Chu, J., Sun, X., Yan, C., Yan, N., Xie, D.Y., Raikhel, N., Yang, Z., Stepanova, A.N., Alonso, J.M. and Guo, H. (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell, 23, 3944-3960.
Hematy, K., Sado, P.E., Van Tuinen, A., Rochange, S., Desnos, T., Balzergue, S., Pelletier, S., Renou, J.P. and Hofte, H. (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol, 17, 922-931.
Hepworth, S.R., Zhang, Y., McKim, S., Li, X. and Haughn, G.W. (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell, 17, 1434-1448.
Hermans, C., Porco, S., Vandenbussche, F., Gille, S., De Pessemier, J., Van Der Straeten, D., Verbruggen, N. and Bush, D.R. (2011) Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture. Plant Physiol, 157, 1313-1326.
Hermans, C., Porco, S., Verbruggen, N. and Bush, D.R. (2010) Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions. Plant Physiol, 152, 904-917.
Holbrook-Smith, D. and McCourt, P. (2018) Chemical Screening for Strigolactone Receptor Antagonists Using Arabidopsis thaliana. Methods Mol Biol, 1795, 117-126.
Hong, S.W., Lee, U. and Vierling, E. (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol, 132, 757-767.
Hossain, M.A., Noh, H.N., Kim, K.I., Koh, E.J., Wi, S.G., Bae, H.J., Lee, H. and Hong, S.W. (2010) Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings. J Plant Physiol, 167, 650-658.
Hua, Z. and Vierstra, R.D. (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 62, 299-334.
Huang, N.C., Jane, W.N., Chen, J. and Yu, T.S. (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant journal : for cell and molecular biology, 72, 175-184.
Ji, A.X. and Prive, G.G. (2013) Crystal structure of KLHL3 in complex with Cullin3. PLoS One, 8, e60445.
Joo, S., Liu, Y., Lueth, A. and Zhang, S. (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J, 54, 129-140.
Ju, C., Yoon, G.M., Shemansky, J.M., Lin, D.Y., Ying, Z.I., Chang, J., Garrett, W.M., Kessenbrock, M., Groth, G., Tucker, M.L., Cooper, B., Kieber, J.J. and Chang, C. (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A, 109, 19486-19491.
Julian, J., Coego, A., Lozano-Juste, J., Lechner, E., Wu, Q., Zhang, X., Merilo, E., Belda-Palazon, B., Park, S.Y., Cutler, S.R., An, C., Genschik, P. and Rodriguez, P.L. (2019) The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proc Natl Acad Sci U S A, 116, 15725-15734.
Kafri, R., Springer, M. and Pilpel, Y. (2009) Genetic redundancy: new tricks for old genes. Cell, 136, 389-392.
Kamiyoshihara, Y., Iwata, M., Fukaya, T., Tatsuki, M. and Mori, H. (2010) Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J, 64, 140-150.
Kang, M.I., Kobayashi, A., Wakabayashi, N., Kim, S.G. and Yamamoto, M. (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A, 101, 2046-2051.
Kelley, D.R. and Estelle, M. (2012) Ubiquitin-Mediated Control of Plant Hormone Signaling. Plant Physiology, 160, 47-55.
Kende, H. (1989) Enzymes of ethylene biosynthesis. Plant Physiol, 91, 1-4.
Kende, H. (1993) Ethylene Biosynthesis. Annu Rev Plant Phys, 44, 283-307.
Khan, M.I., Trivellini, A., Fatma, M., Masood, A., Francini, A., Iqbal, N., Ferrante, A. and Khan, N.A. (2015) Role of ethylene in responses of plants to nitrogen availability. Front Plant Sci, 6, 927.
Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. and Ecker, J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 72, 427-441.
Kwon, Y., Kim, S.H., Jung, M.S., Kim, M.S., Oh, J.E., Ju, H.W., Kim, K.I., Vierling, E., Lee, H. and Hong, S.W. (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J, 49, 184-193.
Larsen, P.B. and Cancel, J.D. (2004) A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J, 38, 626-638.
Lechner, E., Leonhardt, N., Eisler, H., Parmentier, Y., Alioua, M., Jacquet, H., Leung, J. and Genschik, P. (2011) MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell, 21, 1116-1128.
Li, G., Xu, W., Kronzucker, H.J. and Shi, W. (2015a) Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis. J Exp Bot, 66, 2041-2054.
Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li, M., An, F. and Guo, H. (2015b) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163, 670-683.
Lin, L.C., Hsu, J.H. and Wang, L.C. (2010) Identification of novel inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. J Biol Chem, 285, 33445-33456.
Lin, Y.L., Sung, S.C., Tsai, H.L., Yu, T.T., Radjacommare, R., Usharani, R., Fatimababy, A.S., Lin, H.Y., Wang, Y.Y. and Fu, H. (2011a) The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell, 23, 2754-2773.
Lin, Y.L., Sung, S.C., Tsai, H.L., Yu, T.T., Radjacommare, R., Usharani, R., Fatimababy, A.S., Lin, H.Y., Wang, Y.Y. and Fua, H. (2011b) The Defective Proteasome but Not Substrate Recognition Function Is Responsible for the Null Phenotypes of the Arabidopsis Proteasome Subunit RPN10. Plant Cell, 23, 2754-2773.
Linkies, A. and Leubner-Metzger, G. (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep, 31, 253-270.
Liu, Y. and Zhang, S. (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell, 16, 3386-3399.
Lopez, M.A., Vicente, J., Kulasekaran, S., Vellosillo, T., Martinez, M., Irigoyen, M.L., Cascon, T., Bannenberg, G., Hamberg, M. and Castresana, C. (2011) Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. The Plant journal : for cell and molecular biology, 67, 447-458.
Lyzenga, W.J., Booth, J.K. and Stone, S.L. (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J, 71, 23-34.
Mao, J.L., Miao, Z.Q., Wang, Z., Yu, L.H., Cai, X.T. and Xiang, C.B. (2016) Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression. PLoS genetics, 12.
Matilla, A.J. and Matilla-Vazquez, M.A. (2008) Involvement of ethylene in seed physiology. Plant Science, 175, 87-97.
Mazzella, M.A., Casal, J.J., Muschietti, J.P. and Fox, A.R. (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci, 5, 52.
Mehta, R.K. and Singh, J. (1999) Bridge-overlap-extension PCR method for constructing chimeric genes. BioTechniques, 26, 1082-+.
Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K.R., Enriquez, P., Binder, B.M., Heber, S., Stepanova, A.N. and Alonso, J.M. (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell, 163, 684-697.
Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., Watanabe, Y., Nakamura, K., Kimura, T. and Ishiguro, S. (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem, 71, 2095-2100.
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y. and Inaba, A. (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol, 118, 1295-1305.
Neff, M.M., Neff, J.D., Chory, J. and Pepper, A.E. (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J, 14, 387-392.
Negi, S., Ivanchenko, M.G. and Muday, G.K. (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J, 55, 175-187.
Neumann, G. (2015) The Role of Ethylene in Plant Adaptations for Phosphate Acquisition in Soils - A Review. Front Plant Sci, 6, 1224.
Norberg, M., Holmlund, M. and Nilsson, O. (2005) The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132, 2203-2213.
Orosa, B., He, Q., Mesmar, J., Gilroy, E.M., McLellan, H., Yang, C., Craig, A., Bailey, M., Zhang, C., Moore, J.D., Boevink, P.C., Tian, Z., Birch, P.R. and Sadanandom, A. (2017) BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS genetics, 13, e1006540.
Ortega-Martinez, O., Pernas, M., Carol, R.J. and Dolan, L. (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science, 317, 507-510.
Park, C.H., Roh, J., Youn, J.H., Son, S.H., Park, J.H., Kim, S.Y., Kim, T.W. and Kim, S.K. (2018) Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol Cells, 41, 923-932.
Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F. and Cutler, S.R. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068-1071.
Perez-Torrado, R., Yamada, D. and Defossez, P.A. (2006) Born to bind: the BTB protein-protein interaction domain. Bioessays, 28, 1194-1202.
Persson, S., Wei, H., Milne, J., Page, G.P. and Somerville, C.R. (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A, 102, 8633-8638.
Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C. and Genschik, P. (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 115, 679-689.
Prasad, M.E., Schofield, A., Lyzenga, W., Liu, H. and Stone, S.L. (2010) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol, 153, 1587-1596.
Pryor, K.D. and Leiting, B. (1997) High-level expression of soluble protein in Escherichia coli using a His(6)-tag and maltose-binding-protein double-affinity fusion system. Protein Expres Purif, 10, 309-319.
Qiao, H., Chang, K.N., Yazaki, J. and Ecker, J.R. (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gene Dev, 23, 512-521.
Qiao, H., Shen, Z., Huang, S.S., Schmitz, R.J., Urich, M.A., Briggs, S.P. and Ecker, J.R. (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 338, 390-393.
Reuten, R., Nikodemus, D., Oliveira, M.B., Patel, T.R., Brachvogel, B., Breloy, I., Stetefeld, J. and Koch, M. (2016) Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems. PLoS One, 11, e0152386.
Roman, G., Lubarsky, B., Kieber, J.J., Rothenberg, M. and Ecker, J.R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics, 139, 1393-1409.
Sanchez-Rodriguez, C., Bauer, S., Hematy, K., Saxe, F., Ibanez, A.B., Vodermaier, V., Konlechner, C., Sampathkumar, A., Ruggeberg, M., Aichinger, E., Neumetzler, L., Burgert, I., Somerville, C., Hauser, M.T. and Persson, S. (2012) Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell, 24, 589-607.
Schellingen, K., Van Der Straeten, D., Vandenbussche, F., Prinsen, E., Remans, T., Vangronsveld, J. and Cuypers, A. (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. Bmc Plant Biology, 14.
Schneider, K., Wells, B., Dolan, L. and Roberts, K. (1997) Structural and genetic analysis of epidermal cell differentiation in Arabidopsis primary roots. Development, 124, 1789-1798.
Shahzad, Z. and Amtmann, A. (2017) Food for thought: how nutrients regulate root system architecture. Curr Opin Plant Biol, 39, 80-87.
Smalle, J. and Vierstra, R.D. (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 55, 555-590.
Song, S.S., Huang, H., Gao, H., Wang, J.J., Wu, D.W., Liu, X.L., Yang, S.H., Zhai, Q.Z., Li, C.Y., Qi, T.C. and Xie, D.X. (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell, 26, 263-279.
Stogios, P.J., Downs, G.S., Jauhal, J.J., Nandra, S.K. and Prive, G.G. (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol, 6, R82.
Strader, L.C., Chen, G.L. and Bartel, B. (2010) Ethylene directs auxin to control root cell expansion. The Plant journal : for cell and molecular biology, 64, 874-884.
Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K. and Bennett, M.J. (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell, 19, 2186-2196.
Tang, X., Orlicky, S., Lin, Z., Willems, A., Neculai, D., Ceccarelli, D., Mercurio, F., Shilton, B.H., Sicheri, F. and Tyers, M. (2007) Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell, 129, 1165-1176.
Tian, Q.Y., Sun, P. and Zhang, W.H. (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol, 184, 918-931.
Toth, R. and van der Hoorn, R.A. (2010) Emerging principles in plant chemical genetics. Trends Plant Sci, 15, 81-88.
Tsuchisaka, A. and Theologis, A. (2004a) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. P Natl Acad Sci USA, 101, 2275-2280.
Tsuchisaka, A. and Theologis, A. (2004b) Unique and overlapping expression patterns among the arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiology, 136, 2982-3000.
Vandenbussche, F., Vaseva, I., Vissenberg, K. and Van Der Straeten, D. (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol, 194, 895-909.
Vierstra, R.D. (2009a) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 10, 385-397.
Vierstra, R.D. (2009b) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Bio, 10, 385-397.
Voinnet, O., Rivas, S., Mestre, P. and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant journal : for cell and molecular biology, 33, 949-956.
Wang, K.L., Li, H. and Ecker, J.R. (2002) Ethylene biosynthesis and signaling networks. Plant Cell, 14 Suppl, S131-151.
Wang, K.L., Yoshida, H., Lurin, C. and Ecker, J.R. (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428, 945-950.
Wang, L., Dong, J., Gao, Z. and Liu, D. (2012) The Arabidopsis gene hypersensitive to phosphate starvation 3 encodes ethylene overproduction 1. Plant Cell Physiol, 53, 1093-1105.
Weber, H., Bernhardt, A., Dieterle, M., Hano, P., Mutlu, A., Estelle, M., Genschik, P. and Hellmann, H. (2005) Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiol, 137, 83-93.
Wimuttisuk, W. and Singer, J.D. (2007) The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer. Mol Biol Cell, 18, 899-909.
Wu, B., Zhang, B., Dai, Y., Zhang, L., Shang-Guan, K., Peng, Y., Zhou, Y. and Zhu, Z. (2012) Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 159, 1440-1452.
Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T. and Lin, C.S. (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods, 5, 16.
Yang, S.F. and Hoffman, N.E. (1984) Ethylene Biosynthesis and Its Regulation in Higher-Plants. Annu Rev Plant Phys, 35, 155-189.
Yoshida, H., Nagata, M., Saito, K., Wang, K.L. and Ecker, J.R. (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol, 5, 14.
Yoshida, H., Wang, K.L., Chang, C.M., Mori, K., Uchida, E. and Ecker, J.R. (2006) The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant molecular biology, 62, 427-437.
Zeytuni, N. and Zarivach, R. (2012) Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure, 20, 397-405.
Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bako, L., Fankhauser, C. and Nilsson, O. (2017a) BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife, 6.
Zhang, F., Qi, B., Wang, L., Zhao, B., Rode, S., Riggan, N.D., Ecker, J.R. and Qiao, H. (2016) EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nat Commun, 7, 13018.
Zhang, F., Wang, L., Qi, B., Zhao, B., Ko, E.E., Riggan, N.D., Chin, K. and Qiao, H. (2017b) EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci U S A, 114, 10274-10279.
Zheng, Y.Y., Cui, X.F., Su, L., Fang, S., Chu, J.F., Gong, Q.Q., Yang, J.P. and Zhu, Z.Q. (2017) Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant J, 90, 1144-1155.
Zhong, R., Kays, S.J., Schroeder, B.P. and Ye, Z.H. (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell, 14, 165-179.
Zhu, D., Maier, A., Lee, J.H., Laubinger, S., Saijo, Y., Wang, H., Qu, L.J., Hoecker, U. and Deng, X.W. (2008) Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell, 20, 2307-2323.
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.Q., Seki, M., Zhou, J.M. and Guo, H. (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A, 108, 12539-12544.
Zhuang, M., Calabrese, M.F., Liu, J., Waddell, M.B., Nourse, A., Hammel, M., Miller, D.J., Walden, H., Duda, D.M., Seyedin, S.N., Hoggard, T., Harper, J.W., White, K.P. and Schulman, B.A. (2009) Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Mol Cell, 36, 39-50.
Ziegelbauer, J., Shan, B., Yager, D., Larabell, C., Hoffmann, B. and Tjian, R. (2001) Transcription factor MIZ-1 is regulated via microtubule association. Mol Cell, 8, 339-349.
Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136, 2621-2632.