跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡宏達
Hung-Ta Chien
論文名稱: 漸變式光子晶體透鏡研究
Study of Graded Photonic Crystal Lens
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 英文
論文頁數: 88
中文關鍵詞: 光子晶體漸變式光子晶體漸變式光子晶體透鏡波導耦合器
外文關鍵詞: Photonic crystal., Waveguide coupler, Graded photonic crystal lens, Graded photonic crystal
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究討論一個漸變式光子晶體,其結構為一個以四方晶格排列的空氣柱所組成。空氣柱的大小由中心至外圍在水平方向逐漸增大,而在每一直行中的空氣柱大小是相同的。經由有限時域差分法的計算,我們發現這個漸變式光子晶體可將電磁波聚焦,我們更進一步研究其幾何參數對於焦距、光點大小及聚焦強度的影響。由於此結構可將電磁波聚焦到約兩個晶格常數的範圍內,兩個晶格常數約是等於一個光子晶體波導的寬度,因此我們將此結構應用至光子晶體波導與傳統介電質波導的耦合。並和其它光子晶體波導耦合器進行比較。我們比較的光子晶體波導耦合器包括:光子晶體錐形波導、傳統錐形波導和拋物面鏡耦合器。所以的元件被設計並製作在一個 silicon-on-insulator 基板上。從模擬和量測結果得知,我們所設計的漸變式光子晶體波導耦合器可以在較短的耦合長度限制下提供較高的耦合效率。而我們也討論了其它光子晶體波導耦合器的優缺點。


    In this work, we studied the graded photonic crystal consisting of spatial-varying air holes in a square array theoretically and experimentally. The radii of the air holes are identical in each column and modified from the central column to the edge column. We found that the graded photonic crystal could focus the electromagnetic waves. Through finite-difference time-domain method, we studied the relations between the geometry of the graded photonic crystal, focal length, spot size, and the intensity at focal point. The structure focuses the electromagnetic waves to a focal point measuring only two lattice constants which is close to the width of a single-line-defect photonic crystal waveguide. Therefore, the graded photonic crystal is applied to the issue of the coupling between photonic crystal waveguides and conventional dielectric waveguides. The coupling efficiency is compared with various couplers including the photonic crystal taper, the waveguide taper, and the parabolic mirror coupler. All of the couplers were designed and fabricated on a silicon-on-insulator substrate. The simulation and experimental results suggest that the graded photonic crystal coupler could offer a higher coupling efficiency in a shorter coupling length. Besides, the innate properties of each coupler are discussed.

    ABSTRACT i 摘要 iii 謝誌 v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xix LIST OF ACRONYMS/ABBREVIATIONS xxi CHAPTER 1 INTRODUCTION 1 1.1 Photonic Crystals 1 1.2 Photonic Crystal Lenses 6 1.2.1 Operating in the Linear-dispersion Region 6 1.2.2 Operating in the Negative Refraction Region 7 1.3 Graded Photonic Crystals 9 1.4 The Couplers 11 1.4.1 Photonic Crystal Tapers 11 1.4.2 Waveguide Tapers 14 1.4.3 Parabolic Mirror Coupler 14 1.4.4 The Graded Photonic Crystal Lens Coupler 15 1.5 Summary 16 CHAPTER 2 THEORY AND SIMULATION METHODS 17 2.1 Equifrequency Contour 17 2.2 Snell’s Law in Anisotropic Media 19 2.3 Finite-Difference Time-Domain Method 20 2.4 Plane Wave Expansion 27 2.5 Solve the Eigenmodes of the Waveguides 29 2.5.1 Wave Equations 29 2.5.2 Calculate the Modes in One Dimensional Waveguide 31 2.5.3 Matrix Wave Equations 32 2.5.4 Effective Index Approximation 34 2.6 Summary 35 CHAPTER 3 GRADED PHOTONIC CRYSTAL LENS 37 3.1 Structure and Parameters 37 3.2 Simulation Method and Results 38 3.2.1 Pulse Response 39 3.2.2 Continuous Wave Simulations 41 3.2.3 Further Analyses of the Graded Photonic Crystal Lens 44 3.3 The Focusing by the Graded PC Lens 50 3.4 Summary 55 CHAPTER 4 COUPLERS 57 4.1 Dielectric Waveguides 57 4.2 Photonic Crystal Waveguides 59 4.3 Graded Photonic Crystal Couplers 61 4.4 Other Couplers 62 4.4.1 Photonic Crystal Tapers 62 4.4.2 Waveguide Tapers 64 4.4.3 Parabolic Mirror Coupler 66 4.5 Results 68 4.6 Summary 70 CHAPTER 5 FABRICATION AND MEASUREMENT 71 5.1 Fabrication 71 5.2 Sample Preparation 72 5.2.1 Lapping and Polish 73 5.2.2 Thin Out the Sample and Cleavage 74 5.3 Measurement Process 76 5.3.1 Measurement Setup 76 5.3.2 Measurement Steps 77 5.4 Measurement Results 78 5.5 Summary 80 CHAPTER 6 DISCUSSION AND CONCLUSION 83 6.1 Graded PC Lens and Couplers 83 6.2 Future Work 86 REFERENCE 89 APPENDIX: LIST OF PUBLICATIONS 95

    [1] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, p. 2486, 1987.
    [2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, p. 2059, 1987.
    [3] J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, no. 6621, pp. 143-149, Mar 13 1997.
    [4] E. Yablonovitch, “Photonic crystals: Semiconductors of light,” Sci. Am., vol. 285, no. 6, pp. 46, Dec 2001.
    [5] Wikipedia. "Opal," http://en.wikipedia.org/wiki/Opal#Precious_opal.
    [6] A. R. Parker, V. L. Welch, D. Driver et al., “Structural colour - Opal analogue discovered in a weevil,” Nature, vol. 426, no. 6968, pp. 786-787, Dec 18 2003.
    [7] J. D. Joannopoulos, “Self-assembly lights up,” Nature, vol. 414, no. 6861, pp. 257-258, Nov 15 2001.
    [8] C. H. Chan, C. C. Chen, C. K. Huang et al., “Self-assembled free-standing colloidal crystals,” Nanotechnology, vol. 16, no. 9, pp. 1440-1444, Sep 2005.
    [9] M. Campbell, D. N. Sharp, M. T. Harrison et al., “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, vol. 404, no. 6773, pp. 53-56, Mar 2 2000.
    [10] M. Salauen, M. Audier, M. Duneau et al., “Synthesis of 3-dimensional periodic nanostructures in an interference field of UV laser light,” Appl. Phys. A, vol. 93, no. 1, pp. 105-110, Oct 2008.
    [11] M. Duneau, F. Delyon, and M. Audier, “Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition,” J. Appl. Phys., vol. 96, no. 5, pp. 2428-2436, Sep 2004.
    [12] P. V. Braun and P. Wiltzius, “Microporous materials - Electrochemically grown photonic crystals,” Nature, vol. 402, no. 6762, pp. 603-604, Dec 9 1999.
    [13] C. K. Huang, C. H. Chan, C. Y. Chen et al., “Rapid fabrication of 2D and 3D photonic crystals and their inversed structures,” Nanotechnology, vol. 18, no. 26, 265305, Jul 4 2007.
    [14] G.-T. Chen, J.-I. Chyi, C.-H. Chan et al., “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography,” Appl. Phys. Lett., vol. 91, no. 26, 261910, 2007.
    [15] W. Wu, A. Katsnelson, O. G. Memis et al., “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology, vol. 18, no. 48, 485302, Dec 5 2007.
    [16] W. Wu, D. Dey, O. G. Memis et al., “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett., vol. 3, no. 10, pp. 351-354, Oct 2008.
    [17] S. G. Johnson, C. Manolatou, S. H. Fan et al., “Elimination of cross talk in waveguide intersections,” Opt. Lett., vol. 23, no. 23, pp. 1855-1857, Dec 1 1998.
    [18] T. Sondergaard and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B, vol. 61, no. 23, pp. 15688-15696, Jun 15 2000.
    [19] S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett., vol. 27, no. 12, pp. 1001-1003, Jun 15 2002.
    [20] A. Talneau, L. Le Gouezigou, N. Bouadma et al., “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 mu m,” Appl. Phys. Lett., vol. 80, no. 4, pp. 547-549, Jan 28 2002.
    [21] S. Lan, K. Kanamoto, T. Yang et al., “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B, vol. 67, no. 11, 115208, Mar 15 2003.
    [22] C. Lin, C. Chen, G. Schneider et al., “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express, vol. 12, no. 23, pp. 5723-5728, 2004.
    [23] D. M. Pustai, A. Sharkawy, S. Y. Shi et al., “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlith. Microfab. Microsys, vol. 2, no. 4, pp. 292-299, Oct 2003.
    [24] D. S. Song, S. H. Kim, H. G. Park et al., “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3901-3903, May 27 2002.
    [25] C. C. Chen, C. Y. Chen, W. K. Wang et al., “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express, vol. 13, no. 1, pp. 38-43, Jan 10 2005.
    [26] W. Y. Chiu, T. W. Huang, Y. H. Wu et al., “Directional coupler formed by photonic crystal InAlGaAs nanorods,” J. Lightwave Technol., vol. 26, no. 5-8, pp. 488-491, Mar-Apr 2008.
    [27] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol., vol. 19, no. 12, pp. 1970-1975, 2001.
    [28] B. L. Miao, C. H. Chen, S. Y. Shi et al., “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photonics Technol. Lett., vol. 17, no. 1, pp. 61-63, Jan 2005.
    [29] H. T. Chien, C. C. Chen, and P. G. Luan, “Photonic crystal beam splitters,” Opt. Commun., vol. 259, no. 2, pp. 873-875, Mar 15 2006.
    [30] H. T. Chien, “2x2 Photonic Crystal Beamsplitter,” Institute of Optical Science, National Central University, 2004.
    [31] G. P. Nordin, S. Kim, J. B. Cai et al., “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express, vol. 10, no. 23, pp. 1334-1341, Nov 18 2002.
    [32] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., vol. 77, no. 24, pp. 3902-3904, Dec 11 2000.
    [33] M. D. B. Charlton, M. E. Zoorob, G. J. Parker et al., “Experimental investigation of photonic crystal waveguide devices and line-defect waveguide bends,” Mater. Sci. Eng., B, vol. 74, no. 1-3, pp. 17-24, May 1 2000.
    [34] W. Y. Chiu, T. W. Huang, Y. H. Wu et al., “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express, vol. 15, no. 23, pp. 15500-15506, Nov 12 2007.
    [35] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, pp. 681, 1946.
    [36] C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic Crystal Beam Splitters,” Appl. Opt., vol. 43, no. 33, pp. 6187-6190, 2004.
    [37] P. Halevi, A. A. Krokhin, and J. Arriaga, “Photonic crystals as optical components,” Appl. Phys. Lett., vol. 75, no. 18, pp. 2725-2727, Nov 1 1999.
    [38] P. Halevi, A. A. Krokhin, and J. Arriaga, “Photonic Crystal Optics and Homogenization of 2D Periodic Composites,” Phys. Rev. Lett., vol. 82, no. 4, pp. 719-722, 1999.
    [39] B. C. Gupta and Z. Ye, “Focusing of electromagnetic waves by periodic arrays of dielectric cylinders,” Phys. Rev. B, vol. 67, no. 15, 153109, Apr 2003.
    [40] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3966-3969, Oct 30 2000.
    [41] H. T. Chien, H. T. Tang, C. H. Kuo et al., “Directed diffraction without negative refraction,” Phys. Rev. B, vol. 70, no. 11, 113101, Sep 2004.
    [42] A. Martinez, H. Miguez, J. Sanchez-Dehesa et al., “Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes,” Opt. Express, vol. 13, no. 11, pp. 4160-4174, May 2005.
    [43] A. Martinez and J. Marti, “Analysis of wave focusing inside a negative-index photonic-crystal slab,” Opt. Express, vol. 13, no. 8, pp. 2858-2868, Apr 2005.
    [44] Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B, vol. 68, no. 24, 245110, 2003.
    [45] C. Luo, S. G. Johnson, J. D. Joannopoulos et al., “All-angle negative refraction without negative effective index,” Phys. Rev. B, vol. 65, no. 20, 201104, May 15 2002.
    [46] A. Martinez and J. Marti, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B, vol. 71, no. 23, 235115, Jun 2005.
    [47] Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express, vol. 16, no. 21, pp. 16941-16949, Oct 2008.
    [48] F. AbdelMalek, W. Belhadj, S. Haxha et al., “Realization of a high coupling efficiency by employing a concave lens based on two-dimensional photonic crystals with a negative refractive index,” J. Lightwave Technol., vol. 25, no. 10, pp. 3168-3174, Oct 2007.
    [49] P. Vodo, P. V. Parimi, W. T. Lu et al., “Focusing by planoconcave lens using negative refraction,” Appl. Phys. Lett., vol. 86, no. 20, 201108, May 2005.
    [50] L. Sanchis, A. Hakansson, D. Lopez-Zanon et al., “Integrated optical devices design by genetic algorithm,” Appl. Phys. Lett., vol. 84, no. 22, pp. 4460-4462, May 31 2004.
    [51] E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett., vol. 30, no. 17, pp. 2278-2280, Sep 1 2005.
    [52] H. T. Chien and C. C. Chen, “Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii,” Opt. Express, vol. 14, no. 22, pp. 10759-10764, Oct 30 2006.
    [53] H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photonics Technol. Lett., vol. 19, no. 17-20, pp. 1532-1534, Sep-Oct 2007.
    [54] H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express, vol. 15, no. 3, pp. 1240-1253, Feb 2007.
    [55] H. Kurt, E. Colak, O. Cakmak et al., “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett., vol. 93, no. 17, 171108, Oct 2008.
    [56] D. Luo, C. Alagappan, X. W. Sun et al., “Superbending effect in two-dimensional graded photonic crystals,” Opt. Commun., vol. 282, no. 2, pp. 329-332, Jan 2009.
    [57] F. S. Roux and I. De Leon, “Planar photonic crystal gradient index lens, simulated with a finite difference time domain method,” Phys. Rev. B, vol. 74, no. 11, 113103, Sep 2006.
    [58] E. Pshenary-Severin, C. C. Chen, T. Pertsch et al., “Photonic Crystal Lens for Photonic Crystal Waveguide Coupling,” in CLEO2006, Long Beach, CA, USA, 2006.
    [59] A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol., vol. 19, no. 6, pp. 861-865, Jun 2001.
    [60] E. H. Khoo, A. Q. Liu, and J. H. Wu, “Nonuniform photonic crystal taper for high-efficiency mode coupling,” Opt. Express, vol. 13, no. 20, pp. 7748-7759, Oct 3 2005.
    [61] P. Bienstman, S. Assefa, S. G. Johnson et al., “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. A, vol. 20, no. 9, pp. 1817-1821, Sep 2003.
    [62] P. Pottier, I. Ntakis, and R. M. De La Rue, “Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further device functionality,” Opt. Commun., vol. 223, no. 4-6, pp. 339-347, Aug 2003.
    [63] M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett., vol. 78, no. 11, pp. 1466-1468, 2001.
    [64] P. Lalanne and A. Talneau, “Modal conversion with artificial materials for photonic-crystal waveguides,” Opt. Express, vol. 10, no. 8, pp. 354-359, 2002.
    [65] S. G. Johnson, P. Bienstman, M. A. Skorobogatiy et al., “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E, vol. 66, no. 6, 066608, 2002.
    [66] P. Sanchis, J. Garcia, J. Marti et al., “Experimental demonstration of high coupling efficiency between wide ridge waveguides and single-mode photonic crystal waveguides,” IEEE Photonics Technol. Lett., vol. 16, no. 10, pp. 2272-2274, Oct 2004.
    [67] A. Hakansson, P. Sanchis, J. Sanchez-Dehesa et al., “High-efficiency defect-based photonic-crystal tapers designed by a genetic algorithm,” J. Lightwave Technol., vol. 23, no. 11, pp. 3881-3888, Nov 2005.
    [68] O. Mitomi, K. Kasaya, Y. Tohmori et al., “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol., vol. 14, no. 7, pp. 1714-1720, Jul 1996.
    [69] A. Massaro, M. Grande, R. Cingolani et al., “Design and modeling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potentials formulation,” Opt. Express, vol. 15, no. 25, pp. 16484-16499, 2007.
    [70] E. Miyai, M. Okano, M. Mochizuki et al., “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett., vol. 81, no. 20, pp. 3729-3731, Nov 11 2002.
    [71] A. Adibi, Y. Xu, R. K. Lee et al., “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B, vol. 64, no. 3, 033308, Jul 2001.
    [72] C. Chen, A. Sharkawy, D. Pustai et al., “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,” Opt. Express, vol. 11, no. 23, pp. 3153-3159, 2003.
    [73] D. W. Prather, J. Murakowski, S. Y. Shi et al., “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett., vol. 27, no. 18, pp. 1601-1603, Sep 2002.
    [74] M. F. Lu and Y. T. Huang, “Design of a photonic crystal tapered coupler with different section lengths based on multimode interference and mode matching,” Jpn. J. Appl. Phys., vol. 47, no. 3, pp. 1822-1827, Mar 2008.
    [75] E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl., vol. 2, no. 2, pp. 97-102, 2004.
    [76] A. Yariv and P. Yeh, Optical Waves in Crystals, Optical Waves in Crystals, p. 73, Wiley, 1984.
    [77] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol. 62, no. 16, 10696, 2000.
    [78] 欒丕綱 和 陳啟昌, 光子晶體, 五南出版社, 2005.
    [79] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Baker & Taylor Books, 2000.
    [80] K. Yee, “Numerical solution of initial boundary value problems involving maxwell''s equations in isotropic media,” Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966.
    [81] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys., vol. 114, no. 2, pp. 185-200, Oct 1994.
    [82] M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microwave Compon. Lett., vol. 11, no. 4, pp. 152-154, Apr 2001.
    [83] BandSolve 2.0 User Guide, RSoft Design Group, Inc. .
    [84] K. Sakoda, Optical Properties of Photonic Crystals, Springer, 2001.
    [85] K. Yasumoto, Electromagnetic Theory and Applications for Photonic Crystals, New York: CRC Taylor & Francis, 2006.
    [86] P. Yeh, Guided Waves in Layered Media, Optical Waves in Layered Media, p. 363, 1988.
    [87] B. C. Gupta, C.-H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensionalrandom dielectric systems,” Phys. Rev. E, vol. 69, no. 6, 066615, 2004.
    [88] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B, vol. 65, no. 11, 115208, 2002.
    [89] T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett., vol. 26, no. 14, pp. 1102-1104, Jul 15 2001.
    [90] M. H. Shih, W. J. Kim, W. Kuang et al., “Two-dimensional photonic crystal Mach--Zehnder interferometers,” Appl. Phys. Lett., vol. 84, no. 4, pp. 460-462, 2004.

    QR CODE
    :::