| 研究生: |
簡琮晟 Tsung-Sheng Chien |
|---|---|
| 論文名稱: |
利用旁流式薄膜生物處理系統(MBR)處理光電業廢水之研究 Study on Treatment of Photovoltaic Wastewater by side-stream Membrane bio-reactor (MBR) |
| 指導教授: | 李俊福 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 薄膜生物反應槽(MBR) 、偏光板 、工業區廢水 |
| 外文關鍵詞: | MBR, polarizer, industrial wastewater treatment |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用2016年6月至2018年4月共 22個月的操作數據為分析資料,將活性污泥槽之溶氧、pH值、溫度等基本因子監控在固定範圍內,將MLSS控制在11,500 mg/L左右,期間添加葡萄糖、尿素等營養源,調整F/M在0.04~0.05 kg COD/kg MLSS - day之間,並觀察活性污泥槽菌相變化,以瞭解不同因子的操作參數,對MBR透過水通量變化造成之影響,使旁流式MBR效能維持在最佳效率。
本研究結果顯示,旁流式MBR之COD去除效率可達到97.5%,且透過薄膜結垢因子之控制,能有效提升透過水通量增加36%,同時讓廠內廢水系統維護費用單價減少45%;維護性線上藥洗能恢復MBR透過水通量9~22%不等,恢復性離線清洗完成之膜管,迴流通量均能恢復10~25%不等,同時也能提升19~20%之透過水通量。
In this study, operational data from June 2016 to April 2018 for a total of 22 months were used to monitor the basic factors such as dissolved oxygen, pH, and temperature in the activated sludge tank within a fixed range, The MLSS was controlled at 11,500 mg/L, during which glucose, urea and other nutrients were added. F/M was adjusted between 0.04~0.05 kg COD/kg MLSS-day. Changes of activated sludge tank phase was observed to understand the operating parameters of different factors’impact on the MBR through the water flux variations to maintain the optimum effectiveness of the side-by-side MBR. The results of this study show that the COD removal efficiency of side-stream MBR can reach 97.5%, and through the control of the membrane fouling factors, the permeate flux can be effectively increased by 36%, while the unit cost for the maintenance of the wastewater system in the plant can be reduced by 45%. The maintenance of online chemical wash can restore the MBR through 9~22% of the water flux, and the membranes recovered from the offline cleaning can recover 10~25% of the flux, and can also increase 19~20% of the flux.
參考文獻
1. Abdullah, “Investigation of effect of dynamic operational conditions on membrane fouling in a membrane enhanced biological phosphorus removal process,” University of British Columbia, 2007.
2. Bezerra, Luiz Fernando, “Avaliação da remoção de matéria orgânica carbonácea e nitrogenada de águas residuárias utilizando biorreator de MBR,” Universidade Estadual Paulista, 2010.
3. Bouhabila, E. H., Aim, R. B. and Buisson, H, “Fouling characterisation in membrane bioreactors,” Sep. Purif. Technol., 22-23, 123-132, 2001.
4. Brindle, K. and T. Stephenson, “The application of membrane biological reactors for the treatment of wastewaters,” Biotechnology and Bioengineering 49(6): 601-610, 1996.
5. Chang, I. S., Le-Clech, P., Jefferson, B. and Judd, S, “Membrane fouling in MBRs for wastewater treatment,” J. Environ. Eng., 128, 2002.
6. Chang, I. S. and Lee, C. H , “Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling,” Desalination, 120, 221-233, 1998.
7. Chang, E. E., P. C. Chiang, Y. W. Ko, and W. H Lan , “Characteristics of organic precursors and their relationship with disinfection by-products,” Chemosphere, 44, pp. 1231-1236, 2001.
8. Cheryan, M, “Ultrafiltration and microfiltration handbook(Second edition),” CRC press, 1998.
9. Cote, P., Buisson, H., Pound, C. and Arakaki, G, “Immersed membrane activated sludge for the reuse of municipal wastewater,” Desalination, 113, 189-196, 1997.
10. Defrance, L. and Jaffrin, M. Y, “Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux : application to a membrane bioreactor used for wastewater treatment,” J. Membr. Sci., 152, 203-210, 1999.
11. Dufresne, R., Lebrun, R.E. and Lavallee, H.C, “Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreac- tor,” Can. J. Chem. Engng., 75, 95–103, 1997.
12. Gander, M., B. Jefferson, and S. Judd, “Aerobic MBRs for domestic wastewater treatment: a review with cost considerations,” Separation and Purification Technology, 18, pp. 119-130, 2000.
13. Hutter M., Kramer-Schafhalter A. and Mayr B, “Integration of membrane technology in communal wastewater treatment”, operation and cost analysis, Eur Water Manage., 3(3), 33-42, 2000.
14. Janus, Tomasz, “Modelling and simulation of membrane bioreactors for wastewater treatment,” De Montfort University, 2013.
15. Jiang, T. "Characterization and Modelling of Soluble Microbial Products in Membrane Bioreactors", Ghent University, Ghent, Flanders, 2007.
16. Judd, S, “The MBR Book: principles and applications of membrane bioreactors in water and wastewater treatment,” London: Elsevier. 325, 2006.
17. Judd, S., “Submerged membrane bioreactors: Flat plate or hollow fibre”, Filtration and Separation, 39, pp. 30-31, 2002.
18. Khongnakorn, W., Wisniewski, C., Pottier, L. and Vachoud, L, “Physical properties of activated sludge in a submerged membrane bioreactor and relation with membrane fouling,” Separation and purification technology 55, 125-131, 2007.
19. Kim, J. S., Lee, C. H., and Chang, I. S, “Effect of pump shear on the performance of a crossflow membrane bioreactor,” Water Res., 35, 2137-2144, 2001.
20. Kimura, K.; Yamato, N.; Yamamura, H. and Watanabe, Y, “Membrane fouling in pilot-scale membrane bioreactors(MBRs)treating municipal wastewater,” Environmental science and technology 39, 6293-6299, 2005.
21. Le-Clech, P., Chen, V., and Fane, T. A. G, “Fouling in membrane bioreactors used in wastewater treatment,” Journal of Membrane Science, 284, 17-53, 2006.
22. Lim A. L. and Bai R, “Membrane fouling and cleaning in microfiltration of activated sludge wastewater,” J. Membr. Sci., 216(1-2), 279-290, 2003.
23. Lu, S.G., T. Imai, M. Ukita, M. Sekine, T. Higuchi, and M. Fukagawa, “A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products,” Water Research, Vol. 35, No. 8, pp. 2038-2048, 2001.
24. Müller E.B., Stouthamber A. H., Versevsld H. W. and Eikelboom D. H, “Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration,” Wat. Res. 29, 1179-1189, 1995.
25. Nah Y. M., Ahn K. H. and Yeom I. T, “Nitrogen removal in household wastewater treatment using an intermittently aerated membrane bioreactor,” Environ. Technol., 21(1), 107-114, 2000.
26. Ozcan, Onur Yilmaz, “Development of an Anaerobic-Phototrophic Bioreactor System for Wastewater Treatment,” GraduateTh eses and Dissertations, 2016.
27. Pieracci, J., Crivello, J. V. and Belfort, G, “Photochemical modi-fication of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling,” J. Membr. Sci., 156, 223-240, 1999.
28. Pollice, A., Brookes, A., Jefferson, B. and Judd, S, “Sub-critical flux fouling in membrane bioreactors - a review of recent literature,” Desalination, 174, 221-230, 2005.
29. Rittmann, B. E., & McCarty, P. L, “Environmental biotechnology: principles and applications,” Boston: McGraw-Hill, 2001.
30. Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T. and Laabs, C, “The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes – six case studies of different European research groups,” Journal of membrane science 263, 113-126, 2005.
31. Smith, C.V., D. Digregorio, et al, “The use of ultrafiltration membranes for activated sludge separation,” Proceedings of Industrial Waste Conference, Purdue University, USA, 1969.
32. Stephenson, T., Judd, S., Jefferson, B. and Brindle, K, “Membrane Bioreactors for Wastewater Treatment,” IWA, London, 2000.
33. Ueda T., Hata K. and Kikuoka Y, “Treatment of domestic sewage from rural settlements by a membrane bioreactor,” Water Sci. Technol., 34, 189-196, 1996.
34. Urbain, V., Mobarry, B., De Silva, V., Stahl, D. A., Rittmann, B. E. and Manem, J, “Integration of performance, molecular biology and modeling to describe the activated sludge process,” Water Sci. Technol., 37, 223-229, 1998.
35. Van Lier, J. B., Tilche, A., Ahring, B. K., Macarie, H., Moletta, R., Dohanyos, M., Hulshoff Pol, L.W., Lens, P., & Verstraete W, “Management New perspectives in anaerobic digestion. Water Science and Technology,” Committee of the IWA Anaerobic Digestion Specialised Group. 43(1), 1–18 , 2001.
36. Visvanathan, C., Aim, R. B. and Parameshwaran, K, “Membrane separation bioreactors for wastewater treatment,” Critical Reviews in Environ. Sci. Technol., 30, 1-48, 2000.
37. Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S. and Lee, C. H, “Hydrophilic modification of polypropylene microfiltration membrane by ozone-induced graft polymerization,” J. Membr. Sci., 169, 269-276, 2000.
38. Yamamoto, K. M. Hiasa, et al, “Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank,” Water Science & Technology 21(4-5): 43-54, 1989.
39. Yang, W., Cicek, N., and Ilg, J, “State-of-the-art of membrane bioreactors:worldwide research and commercial applications in North America,” Journal of Membrane Science, 207, 201-211, 2006.
40. 朱敬平, “薄膜單元於廢水回收之應用,” 中興社環境工程研究中心, 1995.
41. “廢水薄膜處理技術應用與推廣手冊,” 經濟部工業局, 2000.
42. 陳建銘, “生物薄膜程序處理合成生活污水,” 國立交通大學環境工程研究所碩士論文, 2002.
43. 康美祝, “MBR除氮系統特性之研究,” 國立中央大學環境工程研究所碩士論文, 2002.
44. 李信杰, “沉浸式生物薄膜反應器之積垢特性探討,” 2006.
45. 楊宜掄, “半導體業研磨廢水及光電業廢水水質特性分析及管制標準探討計畫,” 2006.
46. 游惠宋, “厭氧與兼氧微生物薄膜系統開發,” 國立交通大學環境工程研究所博士論文, 2006.
47. 游惠宋, “厭氧-好氧薄膜處理技術應用於偏光版製程廢水,” 工業污染防治工程實務技術研討會, 2006.
48. 游惠宋, “薄膜生物處理技術於廢水處理之應用,” 中工高雄會刊17卷第2期, 2009.
49. “活性污泥膜濾法(MBR)技術與應用,” 台灣水環境再生協會, 2009.
50. 范姜仁茂, 莊連春, 曾迪華, 廖述良, 游勝傑, 梁德明, “薄膜生物反應器(MBR)於廢水處理之技術評析,” 工業污染防治第109期, 2009.
51. 蕭代基, 黃德秀, “台灣水資源需求面管理策略之探討,” 財團法人中技社, 2010.
52. 翁煥廷, “廢水二級生物處理廠操作常見問題與對策,” 桃園縣大學校院產業環保技術服務團, 2012.
53. “光電材料及元件製造業發展趨勢” TTR 台灣趨勢研究報告, 2015.
54. “各項用水統計資料庫-工業用水統計” 經濟部水利署, 2016. 取自http://wuss.wra.gov.tw/facarea.aspx
55. “中華民國行業標準分類,” 行政院主計總處, 2016.
56. “水質檢測標準分析方法,” 環檢所, 2018.