跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳晉奇
Jin-Qi Chen
論文名稱: Hawking Radiation and Anomalies in Reissner-Nordstr¨om Black Holes
指導教授: 陳江梅
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 27
中文關鍵詞: 霍金輻射量子反常
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1974年,霍金計算彎曲時空中一顆塌縮的恆星正在形成黑洞的量子效應發現黑洞像個黑體具有溫度 $T_H$ 的熱輻射。2005年,Robinson 和 Wilczek 提出在球對稱黑洞視界附近可藉由抵銷引力反常的方法來推導霍金輻射。在這篇論文中,我們把這樣的概念應用在五維的 uplifted Reissner-Nordstr/"om /(RN/) 黑洞。使用維度約化,我們發現在視界附近五維的 uplifted RN 黑洞作用量可以被/(1+1/)維帶有U/(1/) 電荷 $k$ 的有效作用量來描述。藉由Iso, Umetsu 和 Wilczek 所提出的分析方法,加上適當的邊界條件,我們可以證明五維的 uplifted RN 黑洞的霍金輻射可被量子反常所決定。


    In 1974, Hawking calculated the quantum effect in curved spacetime from a collapsed
    star which forms a black hole. He found that a black hole, similar to blackbody with
    temperature, can emit thermal radiation. In 2005, Robinson and Wilczek proposed a
    different viewpoint that the Hawking radiation, for the spherically symmetric black
    holes, can be derived by the gravitational anomaly cancelation. The holographic
    description of such mechanism is an interesting subject. In this thesis, we apply this
    anomaly cancelation idea to the uplifted 5D Reissner-Nordstr¨om (RN) black holes.
    The action of a probe scalar field in the near horizon region of the uplifted 5D RN
    black holes can be equivalently described by infinite collection of (1+1)-dimensional
    charged scalar field. Following the analytic methods proposed by Iso, Umetsu and
    Wilczek, we can show that the Hawking flux from the uplifted 5D RN black holes can
    be determined by the values of the quantum anomalies.

    Contents 1 Introduction 1 1.1 ABJ Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Gauge Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Gravitational Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Neutral Spherically Symmetric Black Holes 8 2.1 Black Hole Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Hawking Radiation and Gravitational Anomaly . . . . . . . . . . . . 11 3 Uplifted Reissner-Nordstr¨om Black Holes 16 3.1 Uplifted Reissner-Nordstr¨om Black Holes . . . . . . . . . . . . . . . . 16 3.2 Hawking Radiation via Anomaly Cancelations . . . . . . . . . . . . . 17 3.2.1 Gauge Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Gravitational Anomaly . . . . . . . . . . . . . . . . . . . . . . 21 4 Conclusion 23

    Bibliography
    [1] R. A. Bertlmann, Anomalies in Quantum Field Theory (Oxford University Press,
    1996).
    [2] K. Fujikawa and H. Susuki, Path Integrals and Quantum Anomalies (Oxford
    University Press, 2004).
    [3] S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177,
    2426 (1969).
    [4] J. S. Bell and R. Jackiw, “A PCAC puzzle: π 0 → γγ in the σ-model,” Nuovo
    Cim. A 60, 47 (1969).
    [5] S. L. Adler and W. A. Bardeen, “Absence of higher order corrections in the
    anomalous axial vector divergence equation,” Phys. Rev. 182, 1517 (1969).
    [6] W. A. Bardeen and B. Zumino, “Consistent and Covariant Anomalies in Gauge
    and Gravitational Theories,” Nucl. Phys. B 244, 421 (1984).
    [7] L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl. Phys. B
    234, 269 (1984).
    [8] R. A. Bertlmann and E. Kohlprath, “Two-dimensional gravitational anomalies,
    Schwinger terms and dispersion relations,” Annals Phys. 288, 137 (2001) [hep-
    th/0011067].
    [9] S. W. Hawking, “Black hole explosions,” Nature 248, 30 (1974).
    25[10] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43,
    199 (1975) [Erratum-ibid. 46, 206 (1976)].
    [11] J. B. Hartle and S. W. Hawking, “Path Integral Derivation of Black Hole Radi-
    ance,” Phys. Rev. D 13, 2188 (1976).
    [12] M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev.
    Lett. 85, 5042 (2000) [hep-th/9907001].
    [13] S. M. Christensen and S. A. Fulling, “Trace Anomalies and the Hawking Effect,”
    Phys. Rev. D 15, 2088 (1977).
    [14] S. P. Robinson and F. Wilczek, “A Relationship between Hawking radiation and
    gravitational anomalies,” Phys. Rev. Lett. 95, 011303 (2005) [gr-qc/0502074].
    [15] S. Iso, H. Umetsu and F. Wilczek, “Hawking radiation from charged black holes
    via gauge and gravitational anomalies,” Phys. Rev. Lett. 96, 151302 (2006) [hep-
    th/0602146].
    [16] S. Iso, H. Umetsu and F. Wilczek, “Anomalies, Hawking radiations and regularity
    in rotating black holes,” Phys. Rev. D 74, 044017 (2006) [hep-th/0606018].
    [17] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv:gr-qc/9310026.
    [18] L. Susskind, “The world as a hologram,” J. Math. Phys. 36, 6377 (1995)
    [arXiv:hep-th/9409089].
    [19] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
    gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
    (1999)] [arXiv:hep-th/9711200].
    [20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field
    theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-
    th/9905111].
    [21] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,
    253 (1998) [arXiv:hep-th/9802150].
    26[22] C. M. Chen, Y. M. Huang and S. J. Zou, “Holographic Duals of Near-extremal
    Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833
    [hep-th]].

    QR CODE
    :::