跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴彥志
Yan-Zhe Lai
論文名稱: 雜質與組成對鈮酸鋰晶纖生長以及結構之影響
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 145
中文關鍵詞: 鈮酸鋰晶纖生長熱張力對流
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • II 摘要............................................................................................................. I 目錄........................................................................................................... II 表目錄...................................................................................................... IV 圖目錄........................................................................................................V 符號說明.................................................................................................. IX 第一章緒論..............................................................................................1 1-1 前言................................................................................................................ 1 1-2 晶纖生長方法................................................................................................ 1 1-3 LHPG 熔區流場型態...................................................................................... 3 1-4 研究材料........................................................................................................ 4 1-5 研究方向........................................................................................................ 6 第二章研究設備與實驗材料..................................................................8 2-1 長晶設備........................................................................................................ 8 2-2 紅外線熱像儀測溫系統................................................................................ 9 2-3 實驗材料的準備.......................................................................................... 11 2-4 晶體後續處理與材料檢測.......................................................................... 12 第三章摻雜氧化鎂之鈮酸鋰................................................................17 3-1 導言.............................................................................................................. 17 3-2 陶瓷棒靜態熔解實驗.................................................................................. 18 3-3 晶纖生長...................................................................................................... 27 3-3-1 條紋式鐵電域結構的形成................................................................ 27 III 3-3-2 條紋式鐵電域結構的型態................................................................ 29 3-4 施予外加熱源調制...................................................................................... 31 第四章摻雜氧化鐵之鈮酸鋰................................................................70 4-1 導言.............................................................................................................. 70 4-2 鈮酸鋰添加氧化鐵晶纖.............................................................................. 71 4-3 拉速的影響.................................................................................................. 72 4-4 生長界面...................................................................................................... 73 4-5 氣泡問題...................................................................................................... 74 4-6 生長穩定度.................................................................................................. 75 第五章化學計量配比鈮酸鋰................................................................84 5-1 導言.............................................................................................................. 84 5-2 長晶機制...................................................................................................... 85 5-3 濕透現象(soaking effect)............................................................................. 88 5-4 生長熔區不穩定.......................................................................................... 90 第六章c 軸鈮酸鋰型態的穩定性.......................................................102 6-1 導言............................................................................................................ 102 6-2 外圍刻面(exterior facets)的形成............................................................... 103 6-3 非平衡的壓縮面以及表面突起結構........................................................ 107 第七章總結論......................................................................................122 參考文獻.................................................................................................124 發表之學術文章....................................................................................134 表目錄 表3-1 熔區的軸向溫度梯度隨氧化鎂添加量變化的情形.............................. 37 表3-2 LN: MgO 晶纖在不同雷射加熱範圍下的最大軸向溫度梯度............ 37 表5-1 在晶纖連續不同部分,以ICP-AES 所測得的平均組成................... 93 表5-2 鈮酸鋰晶纖生長時,a 軸和c 軸晶向的熔區長晶角......................... 93

    1. R.S. Feigelson, Pulling optical fibers, J. Crystal Growth 79 (1986) 669.
    2. D.H. Yoon and T. Fukuda, Characterization of micro single crystals grown by the
    micro-pulling down method, J. Crystal Growth 144 (1994) 201.
    3. H. Oguri, H. Yamamura and T. Orito, Growth of MgO doped LiNbO3
    single-crystal fibers by a novel drawing down method, J. Crystal Growth 110 (1991)
    669
    4. N. Ohnishi and T. Yao, A novel growth technique for single-crystal fibers - the
    micro-czochralski (Mu-Cz) method, Jap. J. Appl. Phys. (Part 2) 28 (1989) L 278.
    5. D.H. Yoon, I. Yonenaga, T. Fukuda and N. Ohnishi, Crystal growth of
    dislocation-free LiNbO3 single-crystals by micro pulling down method, J. Crystal
    Growth 142 (1994) 339.
    6. J.C. Chen and C. Hu, Measurement of the floating-zone interface shape for lithium
    niobate, J. Crystal Growth 149 (1995) 87.
    7. J.C. Chen and C. Hu, Measurement of the surface temperature distribution in the
    float zone of LiNbO3, J. Crystal Growth 158 (1996) 289.
    8. A. Eyer, H. Leiste and R. Nitsche, Floating Zone Growth of Silicon Under
    Micrograving in a Sounding Rocket, J. Crystal Growth 71(1985) 173.
    9. P.A. Clark and W.R. Wilcox, Influence of graving on thermocapillary convection in
    floating zone melting of silicon, J. Crystal Growth 50(1980) 461.
    10. C.E. Chang and W.R. Wilcox, Inhomogeneities due to thermocapillary flow in
    floating zone melting, J.Crystal Growth 28(1975) 8.
    11. D. Schwabe and A. Scharmann, Some evidence for the existence and magnitude
    of a critical Marangoni number for the onset of oscillatory flow in crystal growth
    melts, J. Crystal Growth 46(1979) 125.
    12. J. Barthel, K Eichler, M. Jurisch, and W. Löser, On the significance of surface
    tension driven flow in floating zone melting experiments, Crystal Res. Techhol. 14
    (1979) 637.
    13. M. Jurisch, W. Löser, E. Martuzane and B. Martuzans, Conncetion of
    thermocapillary flow characteristics and the impurity distribution pattern in floating
    zone molten Molybdenum single crystals, Crystal Res. Technol. 17(1982) 963.
    14. M. Jurisch and W. Löser, Analysis of periodic nonrotational W striation in Mo
    Single Crystals due to nonsteady thermocapillary convection, J. Crystal Growth
    102 (1990) 214.
    15. S. Kimura and I. Shihdo, Single crystal growth of YIG by the floating zone
    method, J. Crystal Growth 41(1977) 192.
    16. K. Kitamura, N. Li, I. Shindo and S. Kimura, Interface shape and horizontal
    variations of Al and Ga contents in substituted YIG single crystals grown by the
    floation zone method, J. Crystal Growth 46(1979) 277.
    17. L. O. Wilson, The effect of fluctuation growth rates on segregation in crystals
    grown from the melt, J. Crystal Growth 48(1980) 435.
    18. A.A. Ballman, Growth of Piezoelectric and ferroelectric materials by the
    Czochralski technique, J. American Ceram. Soc. 48 (1965) 112.
    19. Y. S. Luh. R. S. Feigelson. M. M. Fejer and R. L. Byer, Ferroelectric domain
    structures in LiNbO3 single crystal fibers, J. Crystal Growth 78 (1986) 135.
    20. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and
    Related Materials (Clarendon, Oxford, 1977).
    21. P.A. Morris, Impurities in nonlinear optical oxide crystals, J. Crystal Growth 106
    (1990) 76.
    22. G.E. Peterson, A.M. Glass and T.J. Negran, Control of the susceptibility of
    lithium niobate to laser-induced refractive index changes, Appl. Phys lett 19(1971)130.
    23. G.G. Zhong, J. Jian and Z.K. Wu, Measurements of optically induced
    refractive-index damage in lithium niobate, Proc. l1th Intern. Quantum Electronics
    Conf., IEEE. Cat. No. 801, Ch 1561-0 June (1980) 631.
    24. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano and
    P. Günter, Photorefractive properties of iron-doped stoichiometric lithium niobate,
    Opt. Letters 22 (1997) 501.
    25. A. Räuber, in: Current topics in materials science, ed. E. Kaldis (North-Holand,
    Amsterdam, 1978) p.481.
    26. C.H Chun, Experiments on steady and oscillatory temperature distribution in a
    floating zone due to the Maragoni convection, Acta Astronautica 7 (1980) 479.
    27. F. Preisser, D. Schwabe and A. Scharmann, Steady and oscillatory
    thermocapillary connection in liquid columns with free cylindrical surface, J. Fluid.
    Mech. 126 (1983) 545.
    28. S. Ostrach, Y. Kamotain and C.L. Lai, Oscillatory thermocapillary flows, Phy
    Chem. Hydrodynamics 6 (1985) 585.
    29. F.P. Incropera and D. P. DeWitt, Fundamentals of heat and mass transfer, 3rd
    edition, Wiley.
    30. A.M. Prokhorov and Y.S. Kuz''minov, Physics and Chemistry of Crystalline
    Lithium Noibate, Adam Hilger, 1990.
    31. B.C. Grabmaier and F. Otto, Growth and investigation of MgO-doped LiNbO3, J.
    Crystal Growth 79 (1986) 682.
    32. E. Tokizaki, K. Terashima and S. Kimura, Variations in the physical properties of
    molten lithium niobate caused by doping with magnesium oxide, J. Crystal Growth
    123 (1992) 121.
    33. H. Ogawa, H. Ohta and Y. Waseda, Thermal diffusivity measurement of LiNbO3
    melts doped with MgO by laser flash method, J. Crystal Growth 133 (1993) 255.
    34. T. Carlberg and M. Levenstam, Laser-heating applied to microgravity
    experiments-A feasibility study, Microgravity Science Technologhy IV/4 (1991)
    254.
    35. 胡榮章,MgO: LiNbO3 單晶生長及其特性之研究,國立成功大學礦冶及材料
    科學研究所博士論文,民國80 年.
    36. R. Velten, D. Schewabe and A. Scharmann, The periodic instability of
    thermocapillary convection in cylindrical liquid bridges, Phys Fluids A, 3 (1991)
    267.
    37. J.C. Chen and H.K. Wu, Numerical computation of heat flow, flud flow and
    interface shapes in the float zone of lithium niobate during a melting process, Int. J.
    Heat Mass Transfer. 39 (1996) 3707.
    38. 朱建夫,浮點式長晶過程中熱流場之數值模擬,國立中央大學機械工程研究
    所碩士論文,民國83 年.
    39. 吳小昆,晶材熔解過程中熔區熱流場及界面之數值模擬,國立中央大學機械
    工程研究所碩士論文,民國84 年.
    40. J.C. Brice, The cracking of Czochralski-grown crystals, J. Crystal Growth 42
    (1977) 427.
    41. J.C. Chen and Y.C. Lee, The influence of temperature distribution upon the
    structure of LiNbO3 crystal rods grown using the LHPG method, J. Crystal Growth
    208 (2000) 508.
    42. N.B. Ming, J.F. Hong and D. Feng, The growth striations and ferroelectric
    domain structures in Czochralski-grown LiNbO3 single crystals, J. Material Science
    17 (1982) 1663.
    43. J. Chen, Q. Zhou, J.F. Hong, W.S. Wang, N.B. Ming, D. Feng and C.G. Feng,
    Influence of growth striations on para-ferroelectric phase transitions: Mechanism of
    the formation of periodic laminar domains in LiNbO3 and LiTaO3, J. Appl. Phys.
    66 (1989) 336.
    44. Y. Furukawa, M. Sato, F. Nitanda and K. Ito, Growth and characterization of
    MgO-doped LiNbO3 for electro-optic devices, J. Crystal Growth 99 (1990) 832.
    45. J.A. Burton, R.C. Prim and W.P. Slichter, J. Chem. Phys. 21 (1953) 1987.
    46. J.K. Choi and K.H. Auh, Stress induced domain formation in LiNbO3 single
    crystals, J. Materials Science 31 (1996) 643.
    47. M.M. Fejer, Single crystal fibers: Growth dynamics and nonlinear optical
    interactions, PhD Thesis, Stanford University (1986).
    48. Y.H. Xue, D. Feng, N.B. Min and J.S. Zhu, The 2nd harmonic-generation in
    LiNbO3 crystals with periodic laminar ferroelectric domains, Chinese Physics 4
    (1984) 554.
    49. J.A. Armstrong, N. Bloembergen, J. Ducing and P.S. Pershan, Phys. Rev. 127
    (1962) 1918.
    50. G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer and R.L.
    Byer, 42-percent-efficient single-pass CW 2nd-harmonic generation in periodically
    poled lithium-niobate, Optics Letters 22 (1997) 1834.
    51. D. Feng, N.B. Ning, J.F. Hong, Y.S. Yang, J.S. Zhu, Z. Yang and Y.N. Wang,
    Enhancement of second-harmonic generation in LiNbO3 crystals with periodic
    laminar ferroelectric domains, Appl. Phys. Lett. 37 (1980) 607.
    52. M Yamada, N Nada, M Saitoh and K Watanabe, 1st-order quasi-phase matched
    LiNbO3 wave-guide periodically poled by applying an external-field for efficient
    blue 2nd-harmonic generation, Appl. Phys. Lett. 62 (1993) 435.
    53. G.A. Magel, M. M. Fejer, and R.L Byer, Quasi-phase-matched second-harmonic
    generation of blue light in periodically poled LiNbO3, Appl. Phys. Lett. 56 (1990)
    108.
    54. A. Brenier, G. Foulon, M. Ferriol and G. Boulon, The laser-heated-pedestal
    growth of LiNbO3: MgO crystal fibers with ferroelectric domain inversion by in
    situ electric field poling, J. Phys. D: Appl. Phys. 30 (1997) L37-L39.
    55. 黃榮義,”藍光雷射技術與發展”, 光學工程,第五十五期,1996 年,P. 13。
    56. P. Günter and J.P. Huignard ed., Photorefractive Materials and their Applications
    Vol.1 (Berlin : Springer-Verlag, 1988).
    57. P. Günter, Holography, coherent-light amplification and optical-phase
    conjugation with photorefractive materials, Phys. Rep. 93 (1982) 199.
    58. E. Krätzig and R. Sommerfeldt, in: Proc. SPIE, Vol.1273, Nonlinear Optical
    Materials (1990) p. 2.
    59. D.L. Staebler and W. Phillips, Fe-doped LiNbO3 for read-write applications,
    Appl. Optics 13 (1974) 788.
    60. F.H. Mok, Angle-multiplexed storage of 5000 holograms in lithium niobate,
    Optics Letters 18 (1993) 915.
    61. M. Ohira, Z. Chen, T. Kasamatsu and T. Shiosaki, Crystal growth of LinbO3: Fe
    and its photorefractive properties, Jpn. J. Appl. Phys. 30 (1991) 2326.
    62. H. Takei and T. Katsumata, A phase relation between congruently melting
    LiNbO3, Mat. Res. Bull. 17 (1982) 111.
    63. K. Nassau, Scientific American October (1980) 106.
    64. V.V. Prokofiev, J.P. Andreeta, C.J. de Lima, M.R.B. Andreeta, A.C. Hernandes,
    J.F. Carvalho, A.A. Kamshilin and T. Jaaskelainen, The influence of temperature
    gradients on structural perfection of single-crystal sillenite fibers grown by the
    LHPG method, Optical Materials 4 (1995) 521.
    65. M.C. Flemings, Solidification Process (McGraw-Hill, New York, 1974).
    66. K. Kawasaki, Y. Okano, S. Kan, M. Sakamoto, K. Hoshikawa and T. Fukuda,
    Uniformity of Fe-doped LiNbO3 single crystal grown by the Czochralski method, J.
    Crystal Growth 119 (1992) 317.
    67. J.C. Chen, Y.C. Lee and C.Hu, A simple method of examining the propagation of
    defects in the floating-zone solidification process of lithium niobate, J. Crystal
    Growth 166 (1996) 151.
    68. F. Shimura and Y. Fujino, Crystal growth and fundamental properties of
    LiNb1-yTayO3, J. Crystal Growth 38 (1977) 293.
    69. J.C. Chen, L.T. Liu and C.C. Young, A study of the growth mechanism of
    bismuth silicon oxide during LHPG method, J. Crystal Growth 198/199 (1999)
    476.
    70. L.O. Svaasand, M. Eriksrud, G. Nakken and A.P. Grande, J. Crystal Growth 22
    (1974) 230.
    71. P. Lerner, C. Legras, and J.P. Dumas, J. Crystal Growth 3 (1968) 231.
    72. P.F. Bordui, R.G. Normood, D.H. Jundt and M.M. Fejer, Preparation and
    characterization of off-congruent lithium niobate crystals, J. Appl. Phys. 71 (1992)
    875.
    73. G. Malovichko, V.G. Grache, L.P. Yurchenko, V.Ya. Proshko, E.P. Kokanyan and
    V.T. Gabrielyan, Phys. Status Solidi (a) 133 (1992) K29.
    74. K. Polgár, Á . Péter, L. Kovács, G. Corradi and Zs. Szaller, Growth of
    stoichiometric LiNbO3 single crystals by top seeded solution growth method, J.
    Crystal Growth 177 (1997) 211.
    75. J. Hemmerling and R. Hergt, Real structure investigations of LiNbO3
    single-crystals grown by the Flux method, Kristall Technik 15 (1980) 795.
    76. M. Wöhlecke, G. Corradi and K. Betzler, Optical methods to characterize the
    composition and homogeneity of lithium-niobate single-crystals, Appl. Phys. B 63
    (1996) 323.
    77. K. Kitamura, J.K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi, Stoichiometric
    131
    LiNbO3 single crystal growth by double crucible Czochralski method using
    automatic powder supply system, J. Crystal Growth 116 (1992) 327.
    78. N. Niizeki, T. Yamada and H. Toyoda, Growth ridges, etched hillocks, and
    crystal structure of lithium niobate, Jpn. J. Appl. Phys. 6 (1967) 318.
    79. R.S. Feigelson, Crystal Growth of Electronic Materials, edited by E. Kaldis,
    Elsevier Science Publishers B.V., 1985. Ch. 11.
    80. M. Saifi, B. Dubois, E.M. Vogel and F.A. Thiel, Growth of Tetragonal BaTiO3
    single crystal fibers, J. Mater. Sci. 1 (1986) 452.
    81. J.R. Carruthers, G.E. Peterson, M. Grasso and P.M. Bridenbaugh,
    Nonstoichiometry and crystal growth of lithium niobate, J. Appl. Phys. 42 (1971)
    1846.
    82. V.V. Prokofiev, J.P. Andreeta, C.J. de Lima, M.R.B. Andreeta, A.C. Hernandes,
    J.F. Carvalho, A.A. Kamshilin and T. Jääskeläinen, Growth of single-crystal
    photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal
    growth method, J. Crystal Growth 137 (1994) 528.
    83. G.W. Young and J.A. Heminger, Modeling the time-dependent growth of
    single-crystal fibers, J. Crystal Growth 178 (1997) 410.
    84. J.C. Chen, Y.C. Lee and C. Hu, Observation of the growth mechanisms of
    lithium niobate single crystal during a LHPG process, J. Crystal Growth 174 (1997)
    313.
    85. Y. Furukawa, M. Sato, K. Kitamura and F. Nitanda, Growth and characterization
    of off-congruent LiNbO3 single crystals grown by the double crucible method, J.
    Crystal Growth 128 (1993) 909.
    86. A.R. Tanguay, Jr., S. Mroczkowski and R.C. Barker, The Czochralski growth of
    optical quality bismuth silicon oxide (B12SiO20), J. Crystal Growth 42 (1977) 431.
    87. Y. Sugiyama, I. Hatakeyama and I. Yokohama, Growth of a-axis strontium
    132
    barium niobate single crystal fibers, J. Crystal Growth 134 (1993) 255.
    88. J.P. Tower, R. Tobin, P.J. Pearah and R.M. Ware, Interface shape and crystallinity
    in LEC GaAs, J. Crystal Growth 114 (1991) 665.
    89. T.F. Ciszek, Non-cylindrical growth habit if float zoned dislocation-free [111]
    silicon crystals, J. Crystal Growth 10 (1971) 263.
    90. A. Mühlbauer and E. Sirtl, Lamellar growth phenomena in <111>-oriented
    dislocation-free float-zoned silicon single crystals, Phys. Stat. Sol. (a) 23 (1974)
    555.
    91. M.T. Santos, C. Marín and E. Diéguez, Morphology of Bi12GeO20 crystals grown
    along the <111> directions by the Czochralski method, J. Crystal Growth 160 (1996)
    283.
    92. J.C. Rojo, C. Marín, J.J. Derby and E. Diéguez, Heat transfer and the external
    morphology of Czochralski-grown sillenite compounds, J. Crystal Growth 183
    (1998) 604.
    93. K.A. Jackson, Progr. Solid-State Chem. 4 (1967) 53.
    94. W.R. Wilcox, The influence of a temperature gradient on crystal faceting, J.
    Crystal Growth 7 (1970) 203.
    95. A.A. Chernov, Stability of faceted shapes, J. Crystal Growth 24/25 (1974) 11.
    96. V.V. Voronkov and V.M. Pankov, Kristallografiya 20 (1975) 1145.
    97. C. Hu and J.C. Chen, Experimental observation of interface shapes in the float
    zone of lithium niobate during a CO2 laser melting, Int. J. Heat Mass Transfer. 39
    (1996) 3347.
    98. R.N. Hall, J. Chem. Phys. 57 (1953) 836.
    99. A. Trainor and B.E. Bartlett, Solid State Electron. 2 (1961) 106.
    100. P.J. Holmes, J. Phys. Chem. Solids 24 (1963) 1239.
    101. 李有璋,光折變晶纖之生長及其特性研究,國立中央大學機械工程研究所博士論文,民國87 年.
    102. A. Horowitz and G. Kramer, The nature of imperfections in bismuth germanate
    (BSO) crystals, J. Crystal Growth 78 (1986) 121.
    103. 閔乃本,晶體生長的物理基礎,上海科學技術出版社,1982 年.
    發表之學術文章
    1. Yen-Jyh Lai, Jyh-Chen Chen and Kuang-Chung Liao, Investigations of
    fer roelectr ic domain structures in the MgO: LiNbO3 fibers by LHPG, Journal
    of Crystal Growth V. 198/199 (1999) P. 531.
    2. Yen-Jyh Lai and Jyh-Chen Chen, The influence of heavy iron-doping on LiNbO3
    fiber s and their growth, Journal of Crystal Growth V. 212 (2000) P. 211.
    3. Jyh-Chen Chen, Yeou-Chang Lee and Yen-Jyh Lai, Growth of the Stoichiometr ic
    and Nonstoichiometr ic BaTiO3 Crystal Fibers by an LHPG Method,
    Proceedings of the 1998 International Photonics Conference P. 626.
    4. Yen-Jyh Lai and Jyh-Chen Chen, Highly Doped LiNbO3: Fe Single-Crystal Fiber
    Growth By LHPG, Proceedings of ACCGE-11 (American Conference on Crystal
    Growth and Epitaxy), 1999.
    5. 賴彥志,李有璋,陳志臣,含鐵鈮酸鋰纖維單晶之生長(1996 光電科技研討
    會論文集, P. 37)
    6. Yen-Jyh Lai and Jyh-Chen Chen, Investigation of the Growth stability of
    LiNbO3 Single-crystal Fibers, (1999 光電科技研討會論文集)
    7. 陳志臣、李有璋、賴彥志、黃禎宏,淺談晶纖生長與應用(材料會訊、第五卷、
    第三期、P.46)87 年9 月出版
    8. Yen-Jyh Lai and Jyh-Chen Chen, Growth of stoichiometr ic LiNbO3 single
    crystal fiber s by the laser -heated pedestal growth method, 審稿中in Journal of
    Crystal Growth
    9. Yen-Jyh Lai and Jyh-Chen Chen, Effects of the laser heating and air bubbles on
    the morphologies of c-axis LiNbO3 Fiber s, 投稿中

    QR CODE
    :::