跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴裕豐
Yu-feng Tai
論文名稱: 基於穩態小波轉換的彩色半色調影像回復方法
Halftoning image descreening using SWT
指導教授: 范國清
Kuo-Chin Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 89
中文關鍵詞: 電子書網紋離散小波轉換穩態小波轉換半色調影像回復快速小波轉換掃描影像
外文關鍵詞: fast wavelet transform, scanned image, halftome inverse, stationary wavelet transform, moire, halftone image, descreening, discrete wavelet transform
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由iPad、iPhone所掀起之數位閱讀風潮正席捲全球,消費者將紙本圖書掃瞄成數位檔案作為個人用途,將原本的紙本書籍化身為數位檔案於iPad中閱讀的方式日益普遍,也因此掀起了圖書數位掃瞄的商機。
    印刷技術必須先將欲印刷的數位內容做半色調(halftone)的處理,如此一來才能由機器印刷出來,相反地,如果要將印刷品掃瞄成為數位化的圖檔,一些問題就會顯現出來,其中最嚴重的就是印刷網格的問題,使用者會發現印刷品掃瞄的圖檔畫面品質不佳,會有網格的細小圖案產生出來
    ,這種細小圖案造成影像不連續,嚴重影響人眼視覺感觀。
    因此,本論文以此方向為題目,主要分為兩個研究部分,第一部份為半色調方法的原理以及其形成影像網點、錯網(moire)的原因 ,同時也提出了相關影像品質評估方法,利用客觀的數據來作為評估的標準;第二部份則利用小波轉換來處理半色調掃描影像,本研究論文中利用穩態小波轉換(SWT)的方法來改善這個問題,並比較了穩態小波轉換(SWT)與離散小波轉換(DWT)的差異,同時比較了一些常用於影像處理的小波函數對其效果的影響。


    Due to the rapid growth of 3C mobile devices, such as iPad and iPhone, the emerging of ebook becomes a trend accordingly. Users can scan traditional paper books into ebook and read it in iPad or iPhone. It further creates business opportunity and add-on value for traditional publishing industries.
    In printing technology, digital contents have to be transformed into halftone format for printing purpose. However, it will result in some unwanted effects when we inverse the scanned image into its original digital image file. The most serious effects are moire and print grid. It hence deteriorates image quality and cause uncomfortable viewing quality. The reason is that the halftone fine patterns will result in image tone intermittent and thereby influence the
    perception of human vision seriously.
    In this thesis, we focus our research on improving the viewing quality of halftoning image. Firstly, we will describe the principle of digital halftoning and the forming of moire and rosette patterns. We will also present the objective method of estimating descreening image quality at the same time. Then, a method that inverses halftone images using wavelet transform is proposed.The comparison between stationary wavelet transform and discrete wavelet transform is also given. Last, experiments were conducted on various images to illustrate the influences of wavelet families that were used in halftoning process. Experimental results demonstrate the
    superiority of our method.

    目錄 ABSTRACT ........................................................................i 摘要 .................................................................................ii 誌謝 ................................................................................iii 目錄 .................................................................................iv 圖目錄 ............................................................................vii 表目錄 .............................................................................xii 第一章 緒論........................................................................1 1.1 背景....................................................................1 1.2 研究目的...............................................................3 1.3 研究步驟與流程......................................................5 1.4 文獻探討..............................................................9 1.5 論文架構..............................................................12 第二章 基礎理論...................................................................13 2.1 Digital halftone簡介................................................13 2.1.1 Digital halfton的種類.......................................14 2.1.2 Moire and Rosette Pattern...............................19 2.2 Wavelet theory............................................................23 2.2.1 離散小波轉換(DWT)..........................................26 2.2.2 連續小波轉換(CWT)..........................................28 2.2.3 快速小波轉換(FWT)..........................................30 第三章 SWT descreening方法..................................................33 3.1穩態小波轉換(SWT)演算法..........................................34 3.1.1穩態小波分解...................................................35 3.1.2 穩態小波合成..................................................36 3.2 Wavelet families....................................................37 3.2.1 Haar.............................................................37 3.2.2 Daubechies..................................................39 3.2.3 Coiflets.......................................................43 3.2.4 Biorthogonal...............................................45 3.2.5 Symlets.......................................................46 3.3 中值濾波...............................................................49 第四章 影像品質分析............................................................54 4.1 PSNR.....................................................................54 4.2 SSIM......................................................................55 4.3 SSIM+blur rate......................................................58 第五章 實驗結果與討論.........................................................,60 5.1 適用於descreening之影像評估方法實驗......................61 5.2 DWT與SWT之descreening效果比較實驗.....................70 5.3 Wavelet Families對descreening效果之影響實驗..........75    5.4市面上雷射印表機之descreening效果實驗.................78 5.5 實驗結果分析與討論.................................................81 第六章 結論與未來展望.........................................................84 6.1 結論...................................................................84 6.2 未來展望.............................................................86 參考文獻...........................................................................88

    參考文獻
    [1] Yu-Wen Shou and Chin-Teng Lin ,“ Image Descreening by GA CNN
    bas Based Texture Classification ” , IEEE Transactions on Circuits
    and systems , Vol. 51 , No.11, NOVEMBER 2004 。
    [2] G. Gallo and S. Battiato and F. Stanco ,“ A New Descreening
    Technique in the Frequency Domain”,The Eurographics Association , 2006。
    [3] X. H. Wang, Robert S. H. Istepanian, and Yong Hua Song ,
    “ Microarray Image Enhancement by Denoising Using Stationary
    Wavelet Transform ” , IEEE Transactions on Circuits and systems ,
    VOL. 2 , NO. 4 , DEC2003
    [4] Zixiang Xiong, Michael T. Orchard, and Kannan Ramchandran,
    “ Inverse Halftoning Using Wavelets” , IEEE Transactions on Circuits
    and system , No.10 , OCTOBER 1999。
    [5] Jiebo Luo,Ricardo de Queiroz,and Zhigang Fan,“ A Robust
    Technique for Image Descreening Based on the Wavelet
    Transform ” , IEEE Transactions on Circuits and systems,VOL. 46 ,
    NO. 4, APRIL 1998。
    [6] Hasib Siddiqui and Charles A. Bouman,“ Training-Based descreening”,
    IEEE Transactions on Circuits and systems , VOL.16,NO.3, MARCH 2007。
    [7] A. Manjunath and H.M.Ravikumar , “ Comparison of DWT, LWT, SWT
    and S-Transform in Power Quality Analysis ”,European Journal of
    Scientific Research ISSN 1450-216X Vol.39 No.4(2010),pp.569-576。
    [8] Rafael C.Gonzalez and Richard E. Woods“Digital Image Processing,
    2/E ” by Prentice-Hall,Inc,2002。
    [9] David Blatner , Glenn Fleishman , Steve Roth , and Conrad Chavez
    “ Real World Scanning and Halftones (3rd Edition) ” , Peachpit
    Press , 2004 。
    [10] John C. Russ , “The IMAGE PROCESSING Handbook ,Fifth Edition”
    ,CRC Press , 2007。
    [11] Henry R. Kang,“Computational Color Technology”,SPIE Press,2006。
    [12] Henry R. Kang , “Digital Color Halftoning” , CRC Press , 1999。
    [13] Eugenio Hernandez and Guido Weiss,“The first course on Wavelets”
    ,CRCPress , 1996。
    [14] 連國珍,數位影像處理四版,儒林圖書有限公司(台北市),2007年。
    [15] 繆紹綱,數位影像處理--運用MATLAB,第二版,東華書局(台北市)
    , 2005年。
    [16] 殷孟雲,噴墨印表機設計原理,全華圖書有限公司(台北市),2005年。
    [17] 文魁科技公司,數位影像處理技術大全,文魁圖書有限公司(台北市)2008年。

    QR CODE
    :::