| 研究生: |
魏兆廷 Chao-ting Wei |
|---|---|
| 論文名稱: |
純鋁與鋁鎂矽合金微結構對超音波衰減率的影響 The ultrasonic attenuation study for dislocation, grainboundary and precipitates morphologies of pure aluminum and Al-Mg-Si alloy. |
| 指導教授: |
施登士
Teng-shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 自然時效 、晶界 、超音波衰減率 、晶粒尺寸 |
| 外文關鍵詞: | ultrasonic attenuation, nature aging, grain boundary, grain size |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用超音波檢測法量測5N純鋁與Al6063鋁合金材料的超音波衰減率。討論基地中晶界與晶界內基地對音波衰減率的影響( 值與B值)。藉由背向散射電子繞射分析(Electron Back-Scatter Diffraction,EBSD)量測不同角度晶界,將晶界對衰減率的影響區分為低角度(0 o ~ 5o)、中角度(5 o ~ 15o)、高角度(15 o ~ 65o)晶界長度比例參數對衰減率的影響。晶界對衰減率的影響為( 值),B值為基地對衰減率的影響。經計算超音波訊號與純鋁內部差排的關係後,音波衰減率對差排密度的影響較靈敏,但差排密度與差排環的長度及密度不易精確計算,因此容易在計算上發生誤差。
超音波衰減率的 dB(將20MHz超音波衰減率和5MHz超音波衰減率相減)可以增加衰減率變化的敏感度。觀察Al6063經不同降溫速率的退火後晶粒尺寸的變化與 dB成正比。 dB與Al6063自然時效的微硬度變化可看出兩個階段:第一階段為團聚物(Mg-cluster、Si-cluster、co-cluster)的成核及生長,衰減率差值隨著時效時間增加(微硬度增加)而遞減;第二階段為團聚物的穩定成長或整合,此階段微硬度及衰減率差值變化不明顯。
The study used ultrasonic testing to obtain the attenuation of 99.999% pure aluminum and 6063 aluminum alloy. As the result, the measured attenuation is sensitively in varied dislocation density or dislocation loop, so that would increase the calculation errors. Furthermore, we measure attenuation and separate into two parts for discuss: i) grain boundaries set as ; The grain boundary on attenuation were divided to varied angle boundaries (low angle: 0 o ~ 5o, middle angle: 5 o ~ 15o, high angle: 15 o ~ 65o). The angle of grain boundaries of 5N pure Al was observed by using electron back scatter diffraction (EBSD), and estimated the relation between the grain boundary fractions and attenuation. And ii) matrix set as B value.
The subtraction of the ultrasonic attenuation of high frequency and low frequency would increase the sensitivity of the difference of the attenuation. The change of grain size of annealed Al6063 by different cooling rate can observed from the subtraction of the ultrasonic attenuation. There are two stages were observed from the subtraction of the ultrasonic attenuation varying micro-hardness of Al6063 during T4 process (nature aging). One is the nucleation and growth of solute atoms (Mg-cluster、Si-cluster). The subtraction decreases with the increasing of the aging time. The other stage is the steady growth or coalescence of clusters. The changes of the subtraction and micro-hardness are unapparent.
[1] T.G. Leighton, The Acoustic Bubble, Institute of Sound and Vibration Research, Southampton, pp.3-10, pp.16-23, pp.30-31, 1994.
[2] American Society for Nondestructive Testing, Nondestructive Testing Handbook, volume 7, second edition, pp.39, pp.170-173, pp.731-744, 1991.
[3] 陳永增,鄧惠源,非破壞檢測,全華圖書有限公司,台北,4-22-4-39頁, 民國88 年。
[4] E. P. Papadakis, “Revised Grain-Scattering Formulas and Tables”, The journal of the acoustical society of America, volume 37, number 4, pp.703-710, April 1965.
[5] X.G. Zhang, et al., “Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum”, J. Acoust. Soc. Am., volume 116, number 1, pp.109-116, March 2004.
[6] R. Unal, “The mean grain size determination of boron carbide(B4C)-aluminum(Al) and boron carbide(B4C)-nickel(Ni) composites by ultrasonic velocity technique”, Materials Characterization, volume 56, pp.241-244, 2006.
[7] R. Ambardar, “Effect of porosity, pore diameter and grain size on ultrasonic attenuation in aluminum alloy castings”, Insight: Non-Destructive Testing and Condition Monitoring, volume 37, number 7, pp.536-543, July 1995.
[8] R. Ambardar, “Ultrasonic velocity measurement to assess casting quality”, Insight: Non-Destructive Testing and Condition Monitoring, volume 38, number 7, pp.502-508, July 1996.
[9] C.H. , “Investigation of microstructure-ultrasonic velocity relationship in SiCp-reinforced aluminum metal matrix composites”, Materials Science and Engineering A, pp.29-35, 2003.
[10] J. Stella, et al., “Characterization of the sensitization degree in the AISI 304 stainless steel using spectral analysis and conventional ultrasonic techniques”, NDT&E International, volume 42, pp.267-274, 2009.
[11] A. Granato, et al., “Theory of Mechanical Damping Due to Dislocations”, Journal of applied physics, volume 27, number 6, pp.583-593, June 1956.
[12] Akira Hikata, et al., “Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation”, Journal of applied physics, volume 27, number 4, pp.396-404, April 1956.
[13] G.T. Fei, et al., “The relation between the variation of stress, energy loss, ultrasonic attenuation, and dislocation configuration in aluminum during the early stages of fatigue”, Phys. Stat. Sol. (a), volume 140, pp.119-125, 1993.
[14] G.T. Fei, et al., “Ultrasonic attenuation study on the interaction between dislocations and point defects in 99.999 wt% Al and Al-0.025 wt% Mg”, Phys. Stat. Sol. (a), volume 153, pp.323-328, 1996.
[15] J. Wang, et al., “Sensitivity of ultrasonic attenuation and velocity change to cyclic deformation in pure aluminum”, Phys. Stat. Sol. (a), volume 169, pp.43-48, 1998.
[16] J.P. Hirth, et al., Theory of dislocations, second edition, Wiley, New York, pp.59-61, pp.73-76, pp.731-734, 1982.
[17] ASM International, ASM Specialty Handbook: Aluminum and Aluminum Alloys, J.R. Davis, ASM International, pp.639-644, pp.686-687, 1993.
[18] ASM International, Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ASM International, pp.1-19, pp.109, 1984.
[19] E.O. Hall, ”The deformation and ageing of mild steel”, Proc. Phys. Soc. B, volume 64, pp.747-753, 1951.
[20] N.J. Petch, “The Cleavage Strength of Polycrystals”, Journal of Iron and Steel Institute, volume 174, p 25-28, 1953.
[21] N. Hansen, “The effect of grain size and strain on the tensile flow stress of aluminum at room temperature”, Acta metallurgica, volume 25, pp.863-869, 1977.
[22] 日本輕金屬學會委員, 鋁合金之組織與性質, 日本輕金屬學會, pp.278, 1991.
[23] W.H. Cubberly, Heat treating, 9th ed., Metals Handbook, vol.22, American Society for Metals, Metals Park, OH, pp. 674– 676,1981.
[24] K. Masuda, et al., “Microstructures of aged Al–Mg–Si alloys” , Journal of Japan Institute of Light Metals, volume 53, pp.457-462, 2003.
[25] M. Murayama, et al., “The Effect of Cu Additions on the Precipitation Kinetics in an Al-Mg-Si Alloy with Excess Si”, Metallurgical and materials transactions A, volume 32A, pp.239-246, 2001.
[26] M. Murayama, et al., “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys”, Acta materialia, volume 47, pp.1537-1548, 1999.
[27] M. Murayama, et al., “Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys”, Materials Science and Engineering A, volume 250, pp.127-132, 1998.
[28] A. Cuniberti, et al., “Influence of natural aging on the precipitation hardening of an -AlMgSi alloy”, Materials Science and Engineering A, volume 527, pp.5307-5311, 2010.
[29] T. Inoue, et al., “Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests”, Acta Materialia, volume 56, pp. 6291–6303, 2008.
[30] ASTM International, “E112 – 10 Standard test methods for determining average grain size”, pp.10, 2010.