跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許家寅
Chia-Yin Hsu
論文名稱: 利用地電阻影像法推估降雨入滲範圍:以台中霧峰農地為例
Estimation of Infiltration Range Using Electrical ResistivityTomography: A Case Study of Agricultural Land in Wufeng, Taichung
指導教授: 陳建志
Chien-Chih Chen
倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 降雨入滲地電阻影像法土壤含水量轉換關係式空間分布
外文關鍵詞: Infiltration, Electrical Resistivity Tomography(ERT), Soil Water Content (SWC), Conversion Relationship, Spatial Distribution
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在僅有單點土壤含水量計觀測的條件下,本研究利用該土壤含水量計觀測與地電阻影像法(electrical resistivity tomography, ERT)推估出區域空間上的入滲範圍分布。本研究於台中霧峰農業試驗所內的一處農地進行二維ERT監測與土壤含水量監測。透過建立現地電阻率變化率與土壤含水量變化率轉換關係式,把富空間解析的電阻率變化率結果換算土壤含水量變化率。進而在一維土壤水平衡的假設下,推估區域範圍中的入滲範圍分布。本研究使用一套全自動多波道地電阻監測系統並採用非傳統的混編陣列定時蒐集電阻資料。在ERT監測期間(2022年6月至8月),我們挑選三個降雨事件進行電阻率與土壤含水量分析。由土壤含水量計所觀測之土壤含水量變化與其對應的電阻率變化,我們建立一線性電阻率變化率與土壤含水量變化率的轉換關係式。其後,我們比較由此轉換關係式計算出之入滲範圍及由土壤含水量計讀值計算出之入滲範圍。因兩入滲範圍結果相近,故我們應用此轉換關係式於土壤含水量計位置之左右各2.5公尺範圍內的電阻率變化率剖面,進而計算該範圍內的入滲範圍分布。根據三個降雨事件的入滲範圍結果,我們觀察到不同土壤材料對入滲深淺有所影響。此外,當降雨量小時,土壤含水量的變化很小,電阻率的變化也很小,在這種訊號–雜訊比低的情境下,我們無法透過轉換關係式將電阻率變化率轉換土壤含水量變化率,並計算出入滲範圍。在僅有單點土壤含水量觀測的條件下,本研究透過土壤含水量觀測與ERT建立現地ERT轉換關係式,最後量化區域空間中降雨入滲所涵蓋的入滲範圍分布。以期此結合ERT與土壤含水量之方法未來對農田灌溉或農田水資源管理上可有所應用及貢獻。


    This study presents a method to estimate the spatial distribution of infiltration range in an agricultural land using a single-point soil water content(SWC) sensor and electrical resistivity tomography(ERT). The research was conducted in an agricultural land at the Wufeng Agricultural Research Institute in Taichung, where two-dimensional ERT monitoring and one-dimensional SWC monitoring were performed. By establishing a conversion relationship between the local relative change in electrical resistivity and the relative change in SWC based on field measurements, the high-resolution results of resistivity variations were transformed into SWC variations. The distribution of infiltration range due to rainfall was subsequently estimated by assuming a one-dimensional soil water balance. A fully automated multi-channel ERT monitoring system was employed, and non-conventional mixed-array configuration was adopted to collect resistivity data at regular intervals. Three rainfall events during the stable ERT monitoring period (June to August 2022) were selected for resistivity and SWC analysis. By observing SWC variations at a single-point location using a sensor and its corresponding resistivity variations, a conversion relationship between the local relative change in resistivity and relative change in SWC was established. This conversion relationship was then applied to calculate the infiltration range within a 2.5-meter range on both sides of the location, based on the calibrated infiltration range and the calculated infiltration range from the sensor records. The results obtained from the three rainfall events indicated that the infiltration range was influenced by different soil materials. However, during periods of low rainfall, when the change in SWC was minimal, calculating the infiltration range through the ERT conversion relationship posed challenges. Finally, despite the constraint of having only a single-point SWC observation, this study successfully employed SWC measurements and ERT monitoring to establish a local ERT conversion relationship, thereby quantifying the distribution of infiltration coverage in the regional space. The combined approach of ERT and soil moisture demonstrated in this study holds promising applications and contributions to agricultural irrigation and water resource management in the future.

    摘要 i Abstract ii 誌謝 iv 一、 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 研究場址概述 3 二、 研究方法 8 2-1 地電阻影像法(ERT) 8 2-1-1 原理簡介 8 2-1-2 儀器設備 10 2-1-3 電極陣列配置 11 2-2 雨量與土壤含水量觀測 12 2-3 土壤水平衡與入滲範圍(Z) 12 2-4 電阻率變化率與土壤含水量變化率轉換關係式 14 三、 資料處理說明 23 3-1 ERT原始資料處理 23 3-2 電阻值資料篩選 23 3-3 電阻率剖面逆推 24 3-3-1 逆推理論簡介 25 3-3-2 中位數電阻率剖面計算流程 27 3-4 電阻率與土壤含水量的插值計算 27 四、 結果與討論 33 4-1 三事件之時序電阻率剖面 33 4-2 電阻率變化率與土壤含水量變化率轉換關係式 34 4-3 三事件之入滲範圍分布 36 4-4 土壤材料與入滲範圍差異 36 4-5 入滲範圍下方之土壤含水量的劇烈變化 38 4-6 反S型ERT轉換關係式對事件一入滲範圍的推估 39 五、 結論 73 參考文獻 74 附錄一 78

    AGI (2009). Instruction Manual for EarthImager 2D version 2.4.0. Advanced Geosciences, Inc., Austin, TX
    Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems. Elsevier.
    Bussian, A. E. (1983). Electrical conductance in a porous medium. Geophysics, 48(9), 1258-1268.
    Brunet, P., Clément, R., & Bouvier, C. (2010). Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France. Journal of Hydrology, 380(1-2), 146-153.
    Bittelli, M. (2011). Measuring soil water content: A review. HortTechnology, 21(3), 293-300.
    Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrology and Earth System Sciences, 17(2), 595-609.
    Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water resources research, 51(6), 3837-3866.
    Corradini, C. (2014). Soil moisture in the development of hydrological processes and its determination at different spatial scales. Journal of Hydrology, 516, 1-5.
    Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110-117.
    Fan, J., Scheuermann, A., Guyot, A., Baumgartl, T., & Lockington, D. A. (2015). Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. Journal of Hydrology, 523, 475-488.
    Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H. (2011). Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone Journal, 10(1), 412-424.
    Gunn, D. A., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Dijkstra, T. A., ... & Glendinning, S. (2015). Moisture monitoring in clay embankments using electrical resistivity tomography. Construction and Building Materials, 92, 82-94.
    Gockenbach, M. S. (2016). Linear inverse problems and Tikhonov regularization (Vol. 32). American Mathematical Soc..
    Jayawickreme, D. H., Van Dam, R. L., & Hyndman, D. W. (2010). Hydrological consequences of land-cover change: Quantifying the influence of plants on soil moisture with time-lapse electrical resistivity. Geophysics, 75(4), WA43-WA50.
    Jun, Y., Bae, Y. H., Shin, T. Y., Kim, J. H., & Yim, H. J. (2020). Alkali-activated slag paste with different mixing water: A comparison study of early-age paste using electrical resistivity. Materials, 13(11), 2447.
    Klotzsche, A., Jonard, F., Looms, M. C., van der Kruk, J., & Huisman, J. A. (2018). Measuring soil water content with ground penetrating radar: A decade of progress. Vadose Zone Journal, 17(1), 1-9.
    Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S. M., ... & Or, D. (2013). Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 49(12), 7992-8004.
    Liu, X., Chen, J., Cui, X., Liu, Q., Cao, X., & Chen, X. (2019). Measurement of soil water content using ground-penetrating radar: a review of current methods. International Journal of Digital Earth, 12(1), 95-118.
    Mualem, Y., & Friedman, S. P. (1991). Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resources Research, 27(10), 2771-2777.
    Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5).
    Revil, A., Cathles III, L. M., Losh, S., & Nunn, J. A. (1998). Electrical conductivity in shaly sands with geophysical applications. Journal of Geophysical Research: Solid Earth, 103(B10), 23925-23936.
    Robinson, D. A., Binley, A., Crook, N., Day‐Lewis, F. D., Ferré, T. P. A., Grauch, V. J. S., ... & Slater, L. (2008). Advancing process‐based watershed hydrological research using near‐surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes: An International Journal, 22(18), 3604-3635.
    Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., ... & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358-389.
    Steelman, C. M., Endres, A. L., & Jones, J. P. (2012). High‐resolution ground‐penetrating radar monitoring of soil moisture dynamics: Field results, interpretation, and comparison with unsaturated flow model. Water resources research, 48(9).
    Vogel, C. R. (2002). Computational methods for inverse problems. Society for Industrial and Applied Mathematics.
    Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water resources research, 44(4).
    Zhou, Q. Y., Shimada, J., & Sato, A. (2001). Three‐dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research, 37(2), 273-285.
    朱佾蓁,2020。利用地電阻影像法計算水文地質參數:以屏東平原為例,國立中央大學地球科學學系地球物理研究所碩士論文。
    吳秉昀,2017。地電阻影像法於海岸生物礁調查之研究-以桃園觀音區為例,國立中央大學地球科學學系地球物理研究所碩士論文。
    蔡武男,2021。電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例,國立中央大學地球科學學系地球物理研究所碩士論文。

    QR CODE
    :::