| 研究生: |
陳建中 Jian-Zhong Cheng |
|---|---|
| 論文名稱: |
具多工單等級特性之零工式生產排程問題 |
| 指導教授: |
沈國基
Gwo-Ji Sheen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 多工單等級 、分離圖 、分枝定界法 、混合整數規劃 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
取最小化最大完工時間(Minimum Makespan, Cmax ) 問題㆗之作業具
有工單等級之特性造成加工㆖的限制,意味著作業將會有不同的優先
程度以及特定的排程特性,無法依照傳統的排程方式求得最佳解,而
目前亦未見到能夠針對此問題求取最佳解之排程演算法。因此,本研
究將以㆔種常見的工單等級特性作為探討的對象,包括Hot-lot 等級─
工件不允許發生等候、Rush-lot 等級─工件僅允許發生㆒次等候、
Normal-lot 等級─無特殊限制,發展出㆒般化的演算法 。
在演算法的建構方面,本研究先探討問題的特性來尋找並整理出
相關的命題。先以排定特殊作業(如Hot-lot 作業及部分的Rush-lot
作業)基礎,發展分離弧線的判斷法則,再對無法排定之Rush-lot
作業,求取其㆘線時間㆖界值,以判斷與其他作業間的加工順序,此
外,還有數個命題用來判斷系統是否存在可行解。藉由本研究發展之
各種命題,不僅可避免不可行解的產生,預先刪除枝界法㆗不可行的
分枝情形,還能夠決定大量的分離弧線方向,增加演算法的效率;除
此之外,發展出㆒個㆖界值演算法,接著依據這些命題與㆖界值演算
法發展出㆒個以分枝定界法(Branch and Bound Method)與分離圖
(Disjunctive Graph)為基礎的演算法來求解這個排程問題的最佳解。最
後本研究以㆒近似於混合整數規劃的模式來驗證㆖述演算法的正確
性 。
[1] 柯文清,”晶圓製造廠多工單等級下生產規劃模式之構建”,國立交通大學工業工程與管理學系碩士論文,民國89年。
[2] 溫伊蓁,”晶圓製造廠多工單等級之生產活動控制系統設計”,國立交通大學工業工程與管理學系碩士論文,民國89年。
[3] Adams, J., Balas, E., and Zawack, D., “The Shifting Bottleneck Procedure For Job-Shop Scheduling,” Management Science, Vol.34, No.3, pp.391-401, 1988.
[4] Akturk, M.S., Gorgulu, E. “Match-up scheduling under a machine breakdown,” European Journal of Operation Reasearch, Vol.112, pp.81-97, 1999
[5] Applegate, D., and Cook, W., “A computational study of the job shop scheduling problem,” ORSA Journal of Computing, Vol.3, pp.149-156, 1991.
[6] Baker, J.R., and McMahon, G.B., “Scheduling The General Job-Shop,” The Institute of Management Sciences, Vol.31, No.5, 1985.
[7] Balas, E., “Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm,” Operations Research, Vol.17, pp.941-957, 1969.
[8] Bistline Sr, W.G., Banerjee, S. and Banerjee, A “RTSS: An Interactive Decision Support System For Solving Real Time Scheduling Problems Considering Customer and Job Priorities with Schedule Interruptions” Computer Ops Res. Vol.25, No.11, pp.981-995, 1998
[9] Brucker, P., “An Efficient Algorithm for the Job-Shop Problem with Two Jobs,” Computing, Vol. 40, pp.353-359, 1988.
[10] Carlier, J., and Pinson, E., “An Algorithm for Solving the Job-Shop Problem,” Management Sciences, Vol. 35. pp.164-176, 1989.
[11] Carlier, J., and Pinson, E., “A Practical Use of Jackson’s Schedule for Solving the Job Shop Problem,” Annals of Operations Research, Vol. 26. pp.269-287, 1990.
[12] Carlier, J., and Pinson, E., “Adjustment of Heads and Tails for the Job Shop Problem,” European Journal of Operation Research, Vol.78, pp.146-161, 1994.
[13] Gooding, C. and Rudisill, F. “Contigent Critical Ratio Analysis,” Production and Inventory Management, Vol.25 Issue.4, 1984
[14] Lee, C.Y., Uzsoy, R., and Martin-Vega, L.A., “A Review of Production Planning and Scheduling Models in The Semiconductor Industry. Part I: System Characteristics, Performance Evaluation and Production Planning,” IEEE Trans.,VOL.24,NO.4,1992.
[15] Malhotra, M.K. “Management of Vital Customer Priorities in Job Shop Manufacturing Environment,” Decision Sciences, Vol.25, No. 5/6, 1994.
[16] Menlnyk, S.A., Denzler, D.R., & Steele, D.C. “Scheduling the multiple class job shop with delivery windows,” Proceedings of the Decision Sciences Institute, Atlanta, GA, 1992
[17] Pinedo, M.,”Scheduling:Theory, Algorithms and System,” Prentice Hall, 1995.