| 研究生: |
簡戩 Chien Chien |
|---|---|
| 論文名稱: |
以溶凝膠法製作摻錫氧化鐵薄膜並研究其 在光電分解水之應用 On the fabrication of Sn-doped Fe2O3 thin films by sol-gel process and their application to photoelectrochemical water splitting |
| 指導教授: | 林景崎 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 光電化學法 、溶膠凝膠法 、氧化鐵薄膜 、錫摻雜 、二次退火 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文於披覆摻氟氧化錫(F-doped SnO2, FTO)玻璃基板上,以溶凝膠法搭配旋轉塗佈製程成長氧化鐵薄膜,並探討其應用於光電化學分解水產氫之功能。研究內容在於改變前驅物中螯合劑(polyvinylpyrrolidone, PVP)之濃度、旋轉塗佈層數製作多層氧化鐵薄膜,進而施以二次熱處理研究錫自FTO擴散至氧化鐵薄膜之情形,探討此多層膜氧化鐵之晶體結構、光學性質和光電化學特性。結果顯示: 上述製程所得之多層氧化鐵薄膜,經掃描式電子顯微鏡(SEM)觀察到具有多孔表面之結構;經X光繞射分析(XRD)及拉曼(Raman)光譜分析得知: 此多層氧化鐵薄膜經550 ℃退火2小時後,皆呈現為多晶赤鐵礦(α-Fe2O3, hematite)且未出現二次相;經偏壓0.6 V (vs. SCE)光電化學測試結果顯示: 當螯合劑濃度與鐵之比例為2 (PVP/Fe = 2) ,且經旋轉塗佈8層之薄膜試片較其他層數薄膜具有較高之光電流(0.015 mA/cm2)。若此經550 ℃退火之8層薄膜再經750℃二次退火之試片,偵測其光電流,發現增高至0.03 mA/cm2,究其原因:係由錫離子自FTO基板擴散至氧化鐵薄膜中,提高其載子濃度所致。
為了解錫離子之作用,故意製作錫摻雜自氧化鐵薄膜。製程如同上述,僅在前驅溶液中添加含二價及四價之氯化錫溶液來造成薄膜摻雜。在2.5、5、7.5及10 at.% 四種摻錫氧化鐵薄膜中,經550 ℃退火2小時後,含7.5 at.%之錫摻雜薄膜測得最佳之光電流密度(0.023 mA/cm2 bias 0.6 V vs. SCE);以X光光電子能譜儀(XPS)分析可得知:無論摻雜二價或四價錫離子,薄膜在經過退火後均已轉變成四價錫離子之摻雜。
In this study, the sol-gel and spin coating methods are used to fabricate α-Fe2O3-based thin films on fluorine-doped SnO2 (FTO) glass substrates which is used as a photoelectrode for photoelectrochemical (PEC) water splitting. In the first part, effects of polyvinylpyrrolidone (PVP) concentrations and spin-coating times on the microstructural, morphological, optical and electrochemical and PEC properties of pure α-Fe2O3 thin films are investigated. In the second part, we attempted to prepare Sn-doped α-Fe2O3 thin films for PEC water splitting via two types of impurity-doping (i.e., re-annealed at higher temperature or directly added tin chloride to our precursor solutions). The results from scanning electron microscope showed that the pure α-Fe2O3 thin films revealed a porous films on the surface of sample. After annealing at 550 oC in air ambient, all samples belonged polycrystalline hematite structure and no secondary phase via X-ray diffraction patterns and Raman spectra. From PEC performance, the sample deposited via PVP/Fe concentration ratio of 2 and spin-coating times of 8 times which has a higher photocurrent of 0.015 mA/cm2 than other samples. In the section of Sn-doping, we found that the specimen with re-annealing at 750 oC has a better PEC response due to the high temperature of re-annealing allowed the tin ion diffused from the substrate into iron oxide crystalline which increased the carrier concentration leading a higher PEC performance. On the other hand, we found that the 7.5% Sn-doped α-Fe2O3 thin films has a higher PEC response than other samples which prepared via directly added tin chloride to our precursor solutions. It is noticed that no matter whether added divalent or tetravalent tin ion, after annealing, they all became tetravalent tin ion and bonding with iron which were analyzed by X-ray photoelectron spectroscopy.
1. A. Fujishima, K. Honda, "Electrochemical photolysis of water at semiconductor electrode", Nature, Vol. 238, pp. 37, 1972.
2. J.H. Kennedy, K.W. Frese, Jr, "Photoelectrochemical reduction of aqueous carbon dioxide on P-type gallium phosphide in liquid junction solar cells", Nature, Vol. 257, pp. 115, 1978.
3. Y. Li , J. Z. Zhang , “Hydrogen generation from photoelectrochemical water splitting based on nanomaterials”, Laser Photonics Review , Vol. 4 , pp. 517, 2010.
4. D. A. Wheeler , G. Wang , Y. Ling , Y. Li , J. Z. Zhang , “Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties”, Energy & Environmental Science, Vol. 5 , pp. 6682, 2012.
5. M. Grätzel, “Photoelectrochemical cells”, Nature , Vol. 414 , pp. 338, 2001.
6. K. Sivula , F. Le Formal , M. Grätzel , “Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes”, Chemical & Sustainability , Vol. 4, pp. 432, 2011.
7. G. Wang, Y. Ling, Y. Li, “Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidationand other applications”, Nanoscale, Vol. 4 , pp. 6682, 2012.
8. T. Bak , J. Nowotny , M. Rekas , C. C. Sorrell , “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy , Vol. 27, pp. 991, 2002.
9. G. Wang , Y. Ling , H. Wang , L. Xihong , Y. Li ,” Chemically modified nanostructures for photoelectrochemical water splitting”, Journal of Photochemistry and Photobiology C , Vol. 19 , pp. 35, 2014.
10. V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, "Nanostructured materials for photoelectrochemical hydrogen production using sunlight", International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
11. 吳錦貞,I-III-VI/II-VI 族可見光應答光觸媒材料之光電化學分析與水分解產氫應用,博士論文,國立中正大學化學工程所,民國97年。
12. 林有銘,無所不在的環境清潔工奈米光觸媒,科學發展,402期, 33頁,民國95年。
13. 荘浩宇,陳東煌,取之不盡的太陽能光電化學反應,科學發展,437 期,65頁, 民國98年。
14. A. Kudo, Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemistry Society, Vol. 38, pp. 253, 2009.
15. T. J. La Tempa, X. Feng, M. Paulose, C. A. Grimes, “Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal of chemical physics, Vol. 113, pp. 93, 2009.
16. J. H. Kennedy , M. Anderman , R. Shinar, “Photoactivity of doped α-Fe2O3 electrodes”, J. Electrochemical Society, Vol. 128 , pp. 237, 1981.
17. B. Klahr , S. Gimenez , F. Fabregat-Santiago , T. Hamann , J. Bisquert , “ Water oxidation at hematite photoelectrodes: The role of surface states”, Journal of the American Chemical Society, Vol. 134 , pp. 294, 2012.
18. I. Cesar , K. Sivula , A. Kay , R. Zboril , M. Grätzel , “Influence of feature Size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting”, Journal Physical Chemical , Vol. 772, pp. 113, 2009 .
19. Y. Q. Liang , C. S. Enache , R. van de Krol ,” Influence of Si dopant and SnO2 interfacial layer on the structure of the spray-deposited Fe2O3 films”, Chemical Physics Letters , Vol. 479, pp. 86, 2008.
20. J. A. Glasscock , P. R. F. Barnes , I. C. Plumb , N. Savvides , “Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si”, The Journal Physical Chemistry, Vol. 16477, pp. 111, 2007.
21. S. Kumari , A. P. Singh , D. Deva , R. Shrivastav , S. Dass , V. R. Satsangi, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, International Journal of Hydrogen Energy, Vol. 3985, pp. 35, 2010.
22. A. Pu , J. Deng , M. Li , J. Gao , H. Zhang , Y. Hao , J. Zhong , X. Sun, “Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency”, Journal of Materials Chemistr , Vol. 2491, pp. 2, 2014.
23. J. Liu , C. Liang , H. Zhang , Z. Tian , S. Zhang, “General strategy for doping impurities (Ge, Si, Mn, Sn, Ti) in hematite nanocrystals”, The Journal Physical Chemistry, Vol.4986 , pp. 116, 2012 .
24. R. Franking , L. Li , M. A. Lukowski , F. Meng , Y. Tan , R. J. Hamers ,S. Jin , “Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation” , Energy & Environmental Science, Vol. 500, pp. 6, 2013.
25. S. Shen , C. X. Kronawitter , D. A. Wheeler , P. Guo , S. A. Lindley ,J. Jiang , J. Z. Zhang , L. Guo , S. S. Mao, “Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth”, Journal of Materials Chemistry, Vol. 14498, pp. 1 , 2013.
26. J. S. Jang , J. Lee , H. Ye , F. R. F. Fan , A. J. Bard , “Rapid Screening of Effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal Physical Chemistry , Vol. 6719, pp. 113 , 2009.
27. M. Gaudon , N. Pailhe , J. Majimel , A. Wattiaux , J. Abel , A. Demourgues , “Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of α-Fe2O3 hematite”, Journal of Solid State Chemistry, Vol.2101, pp. 183 , 2010 .
28. V. M. Aroutiounian , V. M. Arakelyan , G. E. Shahnazaryan , H. R. Hovhannisyan , H. Wang , “Photoelectrochemistry of tin-doped iron oxide electrodes”, Solar Energy, Vol. 1369, pp. 81, 2007.
29. L. Xi , S. Y. Chiam , W. F. Mak , P. D. Tran , J. Barber , S. C. J. Loo , L. H. Wong , “A novel strategy for surface treatment on hematite photoanode for efficient water oxidation”, Chemical Science, Vol. 164, pp. 4, 2013 .
30. J. S. Jang , K. Y. Yoon , X. Xiao , F. R. F. Fan , A. J. Bard , “Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping”, Chemistry of Material, Vol. 4803, pp. 21, 2009.
31. A. B. D. Sartoretti, C. J. Solarska, R. Rutkowska, "Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes.," The Journal of chemical physics, Vol. 109, pp. 13685, 2005.
32. C. J. Sartoretti , B. D. Alexander , R. Solarska , W. A. Rutkowska ,J. Augustynski , R. Cerny , “Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping”, Journal of the American Chemical Society, Vol. 109 , pp. 13685, 2005 .
33. X. Z. Li, F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment”, Environmental Science and Technology, Vol. 35, pp. 2381, 2001.
34. S. Kim, S. J. Hwang, W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst”, The Journal of Physical Chemistry, Vol. 109, pp. 24260, 2005.
35. A. Kay, I. Cesar, M.Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714, 2006.
36. M. Rajendran, M. G. Krishna, A .K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
37. V. R. Satsangi, S. Kumari, A. P. Singh, R. Shrivastav, S. Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
38. C. J. Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustynski, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, The Journal of Physical Chemistry,Vol. 109, pp. 13685, 2005.
39. K. S. Alan, Y. S. Hu, A. J. Forman, G. D. Stucky, E. W. McFarland, “ Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic”, Journal of Physical Chemistry, Vol. 112, pp. 15900, 2008.
40. Y. S. Hu, K. S. Alan, A. J. Forman, D. Hazen, J. N. Park, E. W. McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting”, Chemistry of Materials Science, Vol. 20, pp. 3803, 2008.
41. M. Rajendran, M. G. Krishna, A. K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
42. N. C. Pramanik, T. I. Bhuiyan, M. Nakanishi, T. Fujii, J. Takada, S. Seok, “Synthesis and characterization of cerium substituted hematite by sol–gel method”, Materials Letters , Vol. 59, pp. 3783, 2006.
43. W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, “Enhanced photocurrent-voltage characteristics of WO3/Fe2O3 nano-electrodes”, Journal of Physics , Applied Physics, Vol. 40, pp. 1091, 2007.
44. L. S. Flavio, P. L. Kirian, A. P. Nascente, R. L. Edson, “Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting”, Solar Energy Materials & Solar Cell, Vol. 93, pp. 362, 2009.
45. K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J.Tucek, J. Frydrych, M. Gra¨tzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach”, Journal of American Chemical Society, Vol. 132, pp. 7436, 2010.
46. L. Wang, C. Y. Lee, “Influence of annealing temperature on photoelectrochemical water splitting of α-Fe2O3 films prepared by anodic deposition”, Electrochimical Acta , Vol. 91, pp. 307, 2013.
47. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Nano Letter, Vol. 11, pp. 2119, 2011.
48. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin, V. A. Szalai, “Effect of tin doping on α-Fe2O3 photoanodes for water splitting” The Journal Of physical chemistry, Vol. 116, pp. 15290, 2012.
49. H. Uchiyama, M. Yukizawa, H. Kozuka, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, The Journal Of physical chemistry, Vol. 115, pp. 7050, 2011.
50. J. Frydrych, L. Machala J. Tucek, K. Siskova, J. Filip, J. Pechousek, K. Safarova, M. Vondracek, J. H. Seo, O. Schneeweiss, M. Gr€atzel, K. Sivula, R. Zboril, “Facile fabrication of tin-doped hematite photoelectrodes – effect of doping on magnetic properties and performance for light-induced water splitting”, Journal of Materials Chemistry, Vol. 22, pp. 23232, 2012.
51. Y. Ling, Y. Li, “Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Particle & Particle Systems Characterization, Vol. 31, pp. 1113, 2014.
52. M. Mohapatra, S. Layek, S. Anand, H. C. Verma, B. K. Mishra, “Structural and magnetic properties of Mg-doped nano-α-Fe2O3 particles synthesized by surfactant mediation–precipitation technique”, Physical Status Solid, Vol. 250, pp. 213, 2013.