跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林均霖
Jyun-Lin Lin
論文名稱: 地質處置場封填用低鹼度膠結材配方及特性研究
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 低鹼度膠結材低鹼度水泥鈣矽比卜作嵐反應氫氧化鈣
外文關鍵詞: low-pH cementitious materials, low-pH cement, Ca/Si raito, Pozzolanic Reaction, portlandie
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用卜特蘭水泥建造放射性廢棄物地下處置場時,會釋放高鹼的孔隙溶液其pH值介於12-13,在高pH值的情況下將提高風險性,並增強氫氧化物的溶解及對膨潤土回脹功能的損害, 因此需使用低鹼膠結材透過卜作嵐反應消耗孔隙溶液中之氫氧化鈣(CH),藉以降低孔隙溶液pH值,以確保緩衝材料之安全性。
    本研究以摻配低鹼膠結材取代卜特蘭水泥的方式,藉以降低孔隙溶液pH值並針對工作性、耐久性、體積穩定性作評估,並搭配微觀分析X射線繞射分析(XRD)在固定矽灰用量40%下,發現使用爐石配比中在初期水化產物仍有氫氧化鈣的存在,而使用熱重分析(TGA)檢視氫氧化鈣含量(CH)與孔隙溶液pH對應的關係,可發現單純使用卜特蘭水泥時,於90天時仍然有大量的氫氧化鈣存在,而使用低鹼膠結材之配比能有降低氫氧化鈣含量進而影響孔隙溶液pH值,最後利用掃描式顯微鏡SEM與能量散射光譜儀EDS分析檢視水化產物結構與鈣矽比與pH值對應之關係。
    研究結果顯示,由工作性、耐久性與體積穩定性結果評估,可得知在相同矽灰40%用量下,以孔隙溶液pH值來說燃煤飛灰取代將優於爐石,而就工作性及耐久性方面則為爐石取代優於燃煤飛灰,因此就其用量建議矽灰用量固定40%,爐石及飛灰則建議用量為10-20%,以避免摻配過量造成不良的影響。而設計低鹼度水泥時,建議取代卜特蘭水泥40%以上與材料總矽含量達55%以上,將有助於孔隙溶液pH值達目標值,在各種性能評估結果後,建議採用卜特蘭水泥與單一系統取代(矽灰)為最佳。


    Using Portland cement to build radioactive waste underground disposal site, will release high-pH pore fluid which pH value is between 12 and 13. In this kind of high-pH condition, the dissolvability of hydroxides will highly increase, and lead to the damage of the swelling ability of bentonite EBS. So, to insure the safety of buffer material, the low-pH cementitious materials is needed to consume the Ca(OH)2 in pore fluid through the Pozzolanic reaction.
    In this research the low-pH cementitious materials is used to replace the Portland cement to reduce the pH value of pore fluid and evaluate its workability, durability and the stability of volume. With XRD analysis, Ca(OH)2 has been found in early hydration products in blast furnace slag group with 40% Silica fume content. Using low-pH cementitious materials in Portland cement, the Ca(OH)2 content and pH value can be reduced effectively. At the end, determinate the relationships between consist of hydration, Ca / Si ratio and pH value with SEM and EDS analysis.
    The result shows that at the 40% Silica fume content, the pH value in the fly ash group is lower than the blast furnace slag group, but the workability and durability is better in the blast furnace slag group. To maintain its workability and durability, the 40% Silica fume content and 10-20% fly ash and blast furnace slag content are suggested. In low-pH cement design, to obtain the expected pH value, the replacement of Portland cement should more than 40% and the total Silicon content should more than 55%. The Silica fume single replacing system is the most suggested when the workability, stability of volume and durability are considered.

    摘要........................ i Abstract........................ ii 誌謝 ........................ iii 目錄 ........................ iv 圖目錄........................ vi 表目錄........................ viii 第一章 緒論........................ 1 1.1 研究動機........................ 1 1.2 研究目的 ........................ 1 1.3 研究內容........................ 2 1.4 名詞定義........................ 2 第二章 文獻回顧........................ 3 2.1低鹼度水泥........................ 3 2.1.1低鹼度水泥介紹........................ 3 2.1.2低鹼度水泥水化過程........................ 5 2.1.3對於低鹼度水泥的要求........................ 7 2.1.4不同參數對pH值的影響 ........................ 9 2.2低鹼度水泥之設計及類型 ........................ 12 2.2.1 卜特蘭水泥(OPC)........................ 13 2.2.2鋁酸鈣水泥Calcium aluminate cements , CAC)..... 16 2.2.3其它水泥類型........................ 16 2.3 低鹼度水泥漿體之微觀分析........................ 18 2.3.1 低鹼度水泥X-ray繞射分析(XRD) .................. 18 2.3.2 低鹼度水泥之熱重分析........................ 20 2.3.3低鹼度水泥之SEM/EDS之分析....................... 21 2.4孔隙溶液pH量測方法........................ 23 2.4.1 PFE法........................ 23 2.4.2 ESL法 ........................ 27 2.4.3 PFE法與ESL法比較........................ 30 2.5 卜作嵐材料........................ 33 2.5.1卜作嵐反應及特性........................ 33 2.5.2 卜作嵐反應........................ 34 2.5.3 卜作嵐材料與單礦物之反應機制................... 34 2.5.4 卜作嵐材料取代部分水泥之研究 ..................... 34 2.5.5 飛灰特性及應用........................ 35 2.5.6 矽灰特性及應用........................ 36 2.5.7 水淬爐石特性及應用........................ 38 2.6混凝土之收縮變形........................ 40 2.6.1混凝土中的水........................ 40 2.6.2收縮變形機制........................ 41 第三章 實驗材料與規劃........................ 45 3.1 實驗材料........................ 45 3.2 實驗設備及儀器........................ 47 3.3 實驗流程及方法........................ 55 3.3.1 實驗規劃與流程........................ 55 3.3.2低鹼度水泥漿體配比表........................ 58 3.3.3低鹼度水泥砂漿配比表........................ 59 3.3.4低鹼度水泥混凝土配比表........................ 59 3.3.2 實驗方法........................ 60 第四章 試驗結果與分析........................ 66 4.1 低鹼度水泥漿體........................ 67 4.1.1 凝結時間........................ 67 4.1.2漿體pH值量測........................ 68 4.2 低鹼度水泥砂漿........................ 74 4.2.1 砂漿流度行為........................ 74 4.2.2 砂漿抗壓強度........................ 75 4.2.3砂漿pH值量測........................ 76 4.2.4乾燥收縮行為........................ 77 4.2.5自體收縮行為........................ 79 4.3低鹼度水泥混凝土........................ 80 4.3.1 低鹼度水泥混凝土新拌性質........................ 81 4.3.2低鹼度水泥混凝土pH值量測........................ 82 4.3.3 低鹼度水泥混凝土抗壓強度........................ 84 4.4 低鹼度水泥微觀分析........................ 85 4.4.1 X光繞射分析........................ 85 4.4.2 TGA熱重分析........................ 91 4.4.3 SEM分析........................ 99 4.4.4 EDS分析........................ 101 4.5綜合比較........................ 105 第五章 結論與建議........................ 107 5.1 結論........................ 107 5.2建議........................ 108 參考文獻........................ 109

    行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」(1999)。
    行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」(1999)。
    黃兆龍,「高性能混凝土理論與實務」,詹氏書局,臺北(2003)。
    黃兆龍,「卜作嵐混凝土使用手冊」,科技圖書(2007)。
    黃兆龍,「混凝土性能與行為」,詹氏書局,第三版,臺北(2007)。
    A. Hidalgo, I. Llorente, C. Andrade, (2003), “Preliminary physico-chemical characterization of some low pH concretes using silica fume and aluminous cement.” Proc. Workshop on qualification of low pH cement for a geological repository, Stockholm, Sweden, October 15-16.
    A. Hidalgo, M. Castellote, I. Llorente, C. Alonso and C. Andrade, (2005), “The development of the optimal concrete composition compatible with bentonite stability.” ECOCLAY II. Effects of cement on clay barrier performance - phase II, Final Report, contract FIKW-CT-2000-00028, European Commission, pp. 118-131.
    Anders Bodén, Ursula Sievänen, (2005), “Low-pH injection grout for deep repositories.” POSIVA-Working Report, 2005-24.
    M. Snellman, T. Vieno, (2005), “Long-term safety aspects of the use of cement in a repository for spent fuel.” Proc. 2nd low pH Workshop, Enresa, SKB and the ESDRED-project, Madrid, Spain, June 15-16, pp. 27-40.
    Céline Cau Dit Coumes, Simone Courtois, Didier Nectoux, Stéphanie Leclercq, Xavier Bourbon, (2006), “Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories.” Cement and Concrete Research, 36(12), pp. 2152-2163.
    Claire Watson, Steven Benbow, DavidSavage, (2007), “Modelling the interaction of low pH cements and bentonite.” SKI Report 2007:30.
    David Savage, Steven Benbow, (2007), “Low-pH-cements.” SKI Report 2007:32.
    M. Codina, C. Cau-dit-Coumes, P. Le Bescop, J. Verdier, J.P. Ollivier, (2008), “Design and characterization of low-heat and low-alkalinity cements.” Cement and Concrete Research, 38(4), pp. 437-448.
    Carsten Vogt, Björn Lagerblad, Kjell Wallin, Franziska Baldy, (2009), “Low pH self compacting concrete for deposition tunnel plugs.” SKB Rapport R-09-07.
    J.L. García, A. Hidalgo, C. Alonso, Fernández Luco, (2010), “Development of low-pH cementitious materials for HLRW repositories Resistance against ground waters aggression.” Cement and Concrete Research, 40(8), pp. 1290-1297.
    Fidel Grandia, Juan Manuel Galíndez, Jorge Molinero, David Arcos, (2010), “Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site.” SKB Technical Report TR-10-62.
    M.C. Alonso, J.L. Garcia, A. Hidalgo, L. Fernández Luco, (2010), “Development and application of low-pH concretes for structural purposes in geological repository systems.” Woodhead Publishing Series in Energy: Number 9, pp. 286-322.
    Tingting Zhang, C.R. Cheeseman, L.J. Vandeperre, (2011), “Development of low pH cement systems forming magnesium silicate hydrate (M-S-H).” Cement and Concrete Research, 41(4), pp. 439-442.
    Barbara Lothenbach, Erich Wieland, (2012), “Chemical evolution of cementitious materials.” Proc. Workshop organised by OECD/NEA Integration Group for the Safety Case, Cementitious materials in safety cases for geological repositories for radioactive waste: role, evolution and interactions, Brussels, Belgium, November 17-19, 2009, pp. 69-72.
    M.C. Alonso, J.L. García Calvo, C. Walker, M. Naito, S. Pettersson, M. Vuorio, H. Weber, H. Ueda, K. Fujisaki, (2012), “Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials.” SKB R-12-02.
    J.L. García Calvo, M.C. Alonso, A. Hidalgo, L. Fernández Luco, V. Flor-Laguna, (2013), “Development of low-pH cementitious materials based on CAC for HLW repositories: Long-term hydration and resistance against groundwater aggression.” Cement and Concrete Research, 51, pp. 67-77.
    Barbara Lothenbach, Daniel Rentsch, Erich Wieland, (2014), “Hydration of a silica fume blended low-alkali shotcrete cement.” Physics and Chemistry of the Earth, 70-71, pp. 3-16.

    QR CODE
    :::