| 研究生: |
陳鶴祥 He-xiang Chen |
|---|---|
| 論文名稱: |
分層雙色白光LED封裝效率及色彩表現之研究 The Study of Packaging Efficiency and Chromatic Performance of White LEDs with Double-layer Phosphors |
| 指導教授: |
孫慶成
Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 白光LED 、螢光粉模型 、演色性 、封裝效率 、空間色偏 |
| 外文關鍵詞: | white LED, phosphor model, color rendering index, package efficiency, ACCTD |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,將研究以紅綠雙色螢光粉為封裝材料之白光LED。利用分層雙色螢光粉光學模型,比較各種封裝結構於三種不同相關色溫下之封裝效率、演色性及空間色偏。探討反射率變化對於封裝效率之影響,並分析封裝效率下降之原因。依照模擬結果,可得到不同封裝結構於各種相關色溫下,最佳演色指數之螢光粉濃度配方及其封裝效率。最後比較實際封裝與模擬結果,驗證螢光粉光學模型之準確性。
In this thesis, we develop optical models of nitride and YAG phosphors for white-LED lighting. Accordingly, we analyze packaging efficiency, color rendering index, and angular correlated color temperature deviation of white LEDs at different correlated color temperatures and packaging structures with the two-phosphor model and double layers. Besides, the packaging loss with respect to the reflectivity of the substrate is analyzed.
The simulation is used for searching the most appropriate condition of the concentration of phosphors for different packaging structures at different correlated color temperatures so that the targeted performance such as the best color rendering index and highest packaging efficiency can be obtained.
Finally, a comparison between experimental measurement and simulation is done for evaluating the performance of the developed phosphor model.
[1] P. Waide and S. Tanishima, Light's Labour's Lost: Policies for Energy-Efficient Lighting (International Energy Agency, Paris, 2006).
[2] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting (John Wiley & Sons, New York, 2002).
[3] M. Yamada and D. Chwastyk, Adoption of Light-Emitting Diodes in Common Lighting Applications (U.S. Department of Energy, Washington, D.C., 2013).
[4] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[5] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[6] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[7] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US 6507159 (2003).
[8] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
[9] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[10] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[11] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[12] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
[13] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
[14] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
[15] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[16] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).
[17] 孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[18] 陳隆建,發光二極體之原理與製程,全華圖書股份有限公司,台北縣,中華民國一百年。
[19] E. F. Schubert, Light-Emitting Diode (Cambridge University Press, Cambridge, 2003).
[20] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
[21] A. Jaboski, “Efficiency of anti-stokes fluorescence in dyes,” Nature 131, 839-840 (1933).
[22] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[23] International Commission on Illumination, Commission Internationale de l'Eclairage Proceedings (Cambridge University Press, Cambridge, 1931).
[24] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley & Sons, New York, 2000).
[25] The Colour & Vision Research Laboratory, http://www.cvrl.org/.
[26] International Commission on Illumination, CIE 15: Technical Report: Colorimetry, 3rd ed. (CIE, Vienna, 2004).
[27] International Commission on Illumination, CIE 13.3: Technical Report: Method of Measuring and Specifying Colour Rendering Properties of Light Sources (CIE, Vienna, 1995).
[28] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
[29] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[30] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[31] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[32] 彭逸寧,雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[33] 陳靜儀,白光 LED 之螢光粉多功能模型之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[34] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[35] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[36] Breault Research Organization, Inc., http://www.breault.com/.
[37] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photonics Technol. Lett. 23, 552-554 (2011).
[38] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145-5150 (2009).
[39] K. Okuyama, I. W. Lenggoro, and N. Tagami, “Preparation of ZnS and CdS fine particles with different particle sizes by a spray-pyrolysis method,” J. Mater. Sci. 32, 1229-1237 (1997).
[40] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[41] H. C. Hulst, Light Scattering by Small Particles (John Wiley & Sons, New York, 1957).
[42] Cree, Inc., http://www.cree.com/led-chips-and-materials/chips/.
[43] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[44] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[45] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
[46] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[47] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[48] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
[49] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[50] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. SPIE 5530, 266-273 (2004).
[51] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumines. 132, 1252-1256 (2012).
[52] J. D. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).
[53] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339-345 (2002).
[54] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
[55] I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).
[56] 郭冠廷,不同激發光螢光粉光學模型之分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[57] 李惇儒,白光LED之封裝效率之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百年。
[58] 陳正建,白光LED封裝效率與可靠性分析之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
[59] Energy Star, http://www.energystar.gov/partners/manuf_res/IntegralLamps
FINAL.pdf/.
[60] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202, R60-R62 (2005).
[61] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
[62] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Jpn. J. Appl. Phys. 44, 649-651 (2005).